Suppr超能文献

通过电生理学分析颜色感知的尝试。

An attempt to analyse colour reception by electrophysiology.

作者信息

Naka K I, Rushton W A

出版信息

J Physiol. 1966 Aug;185(3):556-86. doi: 10.1113/jphysiol.1966.sp008002.

Abstract
  1. The problem of colour reception is that we do not know the action spectra of the visual pigments involved, the nature of the signals generated nor the interaction between these signals. We only know the incident light and the electric results of interaction.2. In Part 1 we show that S-potentials from red/green (R/G) units saturated with deep red light show this property: added green light pulls down the ceiling of depolarization, but more added red had no power to raise it again. Thus lights that depress the deep red ceiling equally stimulate the green pigment equally. From this the action spectrum of the green pigment can be obtained.3. If we assume that only two visual pigments are involved in the R/G unit, and that lights which do not pull down the deep red ceiling are below the threshold for green cones, then in this range only the red pigment is excited and we may obtain its action spectrum. Its maximum is at 680 nm where no visual pigment so far has been found.4. In Part 2 we consider the following mathematical problem: ;Is it possible that two pigments of given action spectra could combine their outputs in such a way that the resultant would be identical with the output of a third pigment of given action spectrum, for every intensity of every monochromatic light?' The solution shows that this is always mathematically possible, and the necessary interaction function is deduced.5. It is shown further that if the log action spectra are the ;visual parabolas' that resemble Dartnall's nomogram, then the interaction function is simply a linear transform such as Hartline & Ratliff (1957) have found with lateral inhibition in Limulus and Donner & Rushton (1959) with silent substitution in the frog.6. An interaction that matches a single pigment to perfection for all monochromatic lights will not match it for certain mixtures. By this criterion the 680 nm excitability is a pigment and not the resultant of two other pigments, i.e. pigments more excitable in other spectral regions.7. In Part 3 monochromatic lights are matched by red+green mixtures that give identical responses. From this the action spectrum of the red pigment may be obtained without involving nerve organization (except as a null detector). The result, which has one arbitrary constant, is given by the curves of Fig. 10, the continuous curve R or one of the dotted curves. Of these only curve R is acceptable.8. Knowing the action spectra for red and green cones we may consider what signals are generated and how they interact to give the records. Figure 11 suggests a model that will account for the size and sign of S-potentials as function of the quantum catch by the two pigments. It does not embrace the time or space parameters which can be very complex.
摘要
  1. 颜色接收的问题在于,我们既不知道所涉及的视觉色素的作用光谱,也不知道所产生信号的性质以及这些信号之间的相互作用。我们只知道入射光以及相互作用产生的电学结果。

  2. 在第一部分中,我们表明,用深红色光饱和的红/绿(R/G)单元产生的S电位具有这样的特性:添加绿色光会降低去极化的上限,但更多的添加红色光却无法使其再次升高。因此,同样能降低深红色上限的光对绿色色素的刺激程度相同。由此可以得到绿色色素的作用光谱。

  3. 如果我们假设R/G单元中仅涉及两种视觉色素,并且那些不会降低深红色上限的光低于绿色视锥细胞的阈值,那么在此范围内只有红色色素被激发,我们就可以得到它的作用光谱。其最大值在680纳米处,而目前尚未发现任何视觉色素在此处有吸收。

  4. 在第二部分中,我们考虑以下数学问题:“对于给定作用光谱的两种色素,它们是否有可能以这样一种方式组合其输出,即对于每一种单色光的每一个强度,其结果都与给定作用光谱的第三种色素的输出相同?”解决方案表明,这在数学上总是可行的,并推导出了必要的相互作用函数。

  5. 进一步表明,如果对数作用光谱是类似于达特纳尔列线图的“视觉抛物线”,那么相互作用函数仅仅是一种线性变换,就像哈特林和拉特利夫(于1957年)在鲎中发现的侧抑制以及唐纳和拉什顿(于1959年)在青蛙中发现的静息替代那样。

  6. 一种能使单一色素与所有单色光完美匹配的相互作用,对于某些混合光却无法匹配。根据这一标准,680纳米处的兴奋性是一种色素,而不是另外两种色素(即在其他光谱区域更易兴奋的色素)的组合结果。

  7. 在第三部分中,用能产生相同反应的红+绿混合光来匹配单色光。由此可以在不涉及神经组织(除了作为零探测器)的情况下得到红色色素的作用光谱。结果由图10的曲线给出,其中连续曲线R或其中一条虚线曲线。其中只有曲线R是可接受的。

  8. 知道了红色和绿色视锥细胞的作用光谱后,我们可以考虑产生了哪些信号以及它们如何相互作用以给出记录。图11提出了一个模型,该模型可以解释S电位的大小和符号作为两种色素量子捕获量的函数。它没有涵盖可能非常复杂的时间或空间参数。

相似文献

1
5
Colour vision in blue-cone 'monochromacy'.蓝锥细胞“单色视”中的色觉
J Physiol. 1971 Jan;212(1):211-33. doi: 10.1113/jphysiol.1971.sp009318.
6
The red and green cone visual pigments of deuternomalous trichromacy.绿色弱的红绿色视锥色素
J Physiol. 1977 Apr;266(3):647-75. doi: 10.1113/jphysiol.1977.sp011786.
8

引用本文的文献

7
The spectral sensitivity of Drosophila photoreceptors.果蝇感光器的光谱灵敏度。
Sci Rep. 2020 Oct 26;10(1):18242. doi: 10.1038/s41598-020-74742-1.
9
Multifunctional glial support by Semper cells in the Drosophila retina.果蝇视网膜中Semper细胞的多功能神经胶质支持作用。
PLoS Genet. 2017 May 31;13(5):e1006782. doi: 10.1371/journal.pgen.1006782. eCollection 2017 May.

本文引用的文献

1
Excitation pools in the frog's retina.青蛙视网膜中的兴奋池。
J Physiol. 1959 Dec;149(2):327-45. doi: 10.1113/jphysiol.1959.sp006343.
2
VISUAL PIGMENTS OF SINGLE GOLDFISH CONES.单条金鱼视锥细胞的视觉色素
J Physiol. 1965 May;178(1):14-32. doi: 10.1113/jphysiol.1965.sp007611.
3
A FOVEAL PIGMENT IN THE DEUTERANOPE.绿色盲患者的中央凹色素
J Physiol. 1965 Jan;176(1):24-37. doi: 10.1113/jphysiol.1965.sp007532.
4
VISUAL PIGMENTS OF SINGLE PRIMATE CONES.单一灵长类视锥细胞的视觉色素
Science. 1964 Mar 13;143(3611):1181-3. doi: 10.1126/science.143.3611.1181.
5
Retinal stimulation by light substitution.通过光替代进行视网膜刺激。
J Physiol. 1959 Dec;149(2):288-302. doi: 10.1113/jphysiol.1959.sp006340.
6
Electric activity of cells in the eye of Limulus.鲎眼中细胞的电活动。
Am J Ophthalmol. 1958 Nov;46(5 Pt 2):210-22; discussion 222-3. doi: 10.1016/0002-9394(58)90800-6.
9
The effects on colour vision of adaptation to very bright lights.适应极亮光线对色觉的影响。
J Physiol. 1953 Nov 28;122(2):332-50. doi: 10.1113/jphysiol.1953.sp005003.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验