Green C R, Severs N J
J Cell Biol. 1984 Aug;99(2):453-63. doi: 10.1083/jcb.99.2.453.
By using two ultrarapid freezing techniques, we have captured the structure of rat and rabbit cardiac gap junctions in a condition closer to that existing in vivo than to that previously achieved. Our results, which include those from fully functional hearts frozen in situ in the living animal, show that the junctions characteristically consist of multiple small hexagonal arrays of connexons. In tissue frozen 10 min after animal death, however, unordered arrays are common. Examination of junction structure at intervals up to 40 min after death reveals a variety of configurations including dispersed and close-packed unordered arrays, and hexagonal arrays. By use of an isolated intercalated disk preparation, we show that the configuration of cardiac gap junctions in vitro cannot be altered by factors normally considered to induce functional uncoupling. These experiments demonstrate that, contrary to the conclusions of some earlier studies (Baldwin, K. M., 1979, J. Cell Biol., 82:66-75; Peracchia, C., and L. L. Peracchia, 1980, J. Cell Biol., 87:708-718), the arrangement of gap junction connexons, in cardiac tissue at least, cannot be used as a reliable guide to the functional state of the junctions.
通过使用两种超快速冷冻技术,我们捕捉到了大鼠和兔子心脏间隙连接的结构,该结构所处的条件比之前所达到的更接近体内实际存在的状态。我们的研究结果,包括来自动物活体原位冷冻的功能完整心脏的结果,表明这些连接通常由多个小的六角形连接子阵列组成。然而,在动物死亡10分钟后冷冻的组织中,无序阵列很常见。对死亡后长达40分钟的间隔时间内的连接结构进行检查,发现了多种构型,包括分散的和紧密堆积的无序阵列以及六角形阵列。通过使用分离的闰盘制剂,我们表明体外心脏间隙连接的构型不会因通常被认为会导致功能解偶联的因素而改变。这些实验表明,与一些早期研究(鲍德温,K.M.,1979年,《细胞生物学杂志》,82:66 - 75;佩拉基亚,C.和L.L.佩拉基亚,1980年,《细胞生物学杂志》,87:708 - 718)的结论相反,至少在心脏组织中,间隙连接连接子的排列不能作为连接功能状态的可靠指标。