Sadrzadeh S M, Graf E, Panter S S, Hallaway P E, Eaton J W
J Biol Chem. 1984 Dec 10;259(23):14354-6.
Iron and iron compounds may facilitate hydroxyl-radical generation from activated oxygen species. Earlier work on the generation of this radical has been focused on simple, low-molecular-weight iron compounds. We hypothesized that free hemoglobin, like other iron-rich substances, might also mediate hydroxyl-radical generation. We find: 1) In the presence of a superoxide anion-generating system (hypoxanthine and xanthine oxidase), hemoglobin promotes hydroxyl-radical formation in a dose-dependent fashion. 2) This generation of hydroxyl radical is greatly decreased by prior oxidation of the hemoglobin, equilibration of hemoglobin with carbon monoxide, or addition of catalase, while added superoxide dismutase has little effect. Therefore, hydroxyl radical probably arises primarily via reaction between the ferrous heme iron and H2O2. 3) In further support of this, hydroxyl radical forms as readily upon the addition of H2O2 to hemoglobin. 4) Hemoglobin also increases hypoxanthine/xanthine oxidase-driven peroxidation of poly-unsaturated fatty acids such as arachidonic acid and human red cell membrane lipids. 5) The addition of sufficient haptoglobin (the plasma hemoglobin-binding protein) suppresses both hemoglobin-driven hydroxyl radical and malondialdehyde generation. Thus, free hemoglobin may be biologically hazardous, in part because it acts as a "Fenton" reagent, having the potential to catalyze hydroxyl-radical generation in areas of inflammation. Haptoglobin, which binds hemoglobin very tightly, blocks this through a presently unknown mechanism. An important physiologic function of haptoglobin may be prevention of such hemoglobin-mediated oxidation.
铁及铁化合物可能会促进活性氧生成羟基自由基。此前关于该自由基生成的研究主要集中在简单的低分子量铁化合物上。我们推测,游离血红蛋白与其他富含铁的物质一样,也可能介导羟基自由基的生成。我们发现:1)在超氧阴离子生成系统(次黄嘌呤和黄嘌呤氧化酶)存在的情况下,血红蛋白以剂量依赖的方式促进羟基自由基的形成。2)血红蛋白预先氧化、与一氧化碳平衡或添加过氧化氢酶后,这种羟基自由基的生成会大大减少,而添加超氧化物歧化酶的影响很小。因此,羟基自由基可能主要通过亚铁血红素铁与过氧化氢之间的反应产生。3)进一步支持这一点的是,向血红蛋白中添加过氧化氢时,羟基自由基也很容易形成。4)血红蛋白还会增加次黄嘌呤/黄嘌呤氧化酶驱动的多不饱和脂肪酸(如花生四烯酸和人红细胞膜脂质)的过氧化反应。5)添加足够的触珠蛋白(血浆血红蛋白结合蛋白)可抑制血红蛋白驱动的羟基自由基和丙二醛的生成。因此,游离血红蛋白可能具有生物危害性,部分原因是它作为一种“芬顿”试剂,有可能在炎症区域催化羟基自由基的生成。触珠蛋白与血红蛋白紧密结合,通过目前未知的机制阻止了这种情况的发生。触珠蛋白的一个重要生理功能可能是预防这种由血红蛋白介导的氧化反应。