Suppr超能文献

随机神经系统的识别与估计算法

Identification and estimation algorithm for stochastic neural system.

作者信息

Nakao M, Hara K, Kimura M, Sato R

出版信息

Biol Cybern. 1984;50(4):241-9. doi: 10.1007/BF00337074.

Abstract

An algorithm for the estimation of stochastic processes in a neural system is presented. This process is defined here as the continuous stochastic process reflecting the dynamics of the neural system which has some inputs and generates output spike trains. The algorithm proposed here is to identify the system parameters and then estimate the stochastic process called neural system process here. These procedures carried out on the basis of the output spike trains which are supposed to be the data observed in the randomly missing way by the threshold time function in the neural system. The algorithm is constructed with the well-known Kalman filters and realizes the estimation of the neural system process by cooperating with the algorithm for the parameter estimation of the threshold time function presented previously (Nakao et al., 1983). The performance of the algorithm is examined by applying it to the various spike trains simulated by some artificial models and also to the neural spike trains recorded in cat's optic tract fibers. The results in these applications are thought to prove the effectiveness of the algorithm proposed here to some extent. Such attempts, we think, will serve to improve the characterizing and modelling techniques of the stochastic neural systems.

摘要

提出了一种用于估计神经系统中随机过程的算法。在此,该过程被定义为反映具有某些输入并产生输出脉冲序列的神经系统动态的连续随机过程。这里提出的算法是识别系统参数,然后估计这里称为神经系统过程的随机过程。这些过程基于输出脉冲序列进行,这些输出脉冲序列被认为是通过神经系统中的阈值时间函数以随机缺失的方式观测到的数据。该算法由著名的卡尔曼滤波器构建,并通过与先前提出的阈值时间函数参数估计算法(中尾等人,1983年)协作来实现对神经系统过程的估计。通过将该算法应用于由一些人工模型模拟的各种脉冲序列以及猫的视神经纤维中记录的神经脉冲序列来检验其性能。这些应用中的结果被认为在一定程度上证明了这里提出的算法的有效性。我们认为,这样的尝试将有助于改进随机神经系统的表征和建模技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验