Levine R L
J Biol Chem. 1983 Oct 10;258(19):11828-33.
The first step in the proteolytic degradation of bacterial glutamine synthetase is a mixed function oxidation of one of the 16 histidine residues in the glutamine synthetase subunit (Levine, R.L. (1983) J. Biol. Chem. 258, 11823-11827). A model system, consisting of oxygen, a metal ion, and ascorbic acid, mimics the bacterial system in mediating the oxidative modification of glutamine synthetase. This model system was studied to gain an understanding of the mechanism of oxidation and of factors which control the susceptibility of the enzyme to oxidation. Availability of substrates and the extent of covalent modification of the enzyme (adenylylation) interact to modulate susceptibility of the enzyme to oxidation. This interaction provides the biochemical basis for physiologic regulation of intracellular proteolysis of glutamine synthetase. The oxidative modification requires hydrogen peroxide. While the reaction may involve Fenton chemistry, the participation of free radicals, superoxide anion, and singlet oxygen could not be demonstrated.
细菌谷氨酰胺合成酶蛋白水解降解的第一步是谷氨酰胺合成酶亚基中16个组氨酸残基之一的混合功能氧化(莱文,R.L.(1983年)《生物化学杂志》258卷,11823 - 11827页)。由氧气、金属离子和抗坏血酸组成的模型系统在介导谷氨酰胺合成酶的氧化修饰方面模拟了细菌系统。对该模型系统进行了研究,以了解氧化机制以及控制酶氧化敏感性的因素。底物的可用性和酶的共价修饰程度(腺苷化)相互作用,调节酶的氧化敏感性。这种相互作用为谷氨酰胺合成酶细胞内蛋白水解的生理调节提供了生化基础。氧化修饰需要过氧化氢。虽然该反应可能涉及芬顿化学,但自由基、超氧阴离子和单线态氧的参与无法得到证实。