Hildreth E C
Proc R Soc Lond B Biol Sci. 1984 Apr 24;221(1223):189-220. doi: 10.1098/rspb.1984.0030.
The organization of movement in the changing retinal image provides a valuable source of information for analysing the environment in terms of objects, their motion in space, and their three-dimensional structure. A description of this movement is not provided to our visual system directly, however; it must be inferred from the pattern of changing intensity that reaches the eye. This paper examines the problem of motion measurement, which we formulate as the computation of an instantaneous two-dimensional velocity field from the changing image. Initial measurements of motion take place at the location of significant intensity changes. These measurements provide only one component of local velocity, and must be integrated to compute the two-dimensional velocity field. A fundamental problem for this integration stage is that the velocity field is not determined uniquely from information available in the changing image. We formulate an additional constraint of smoothness of the velocity field, based on the physical assumption that surfaces are generally smooth, which allows the computation of a unique velocity field. A theoretical analysis of the conditions under which this computation yields the correct velocity field suggests that the solution is physically plausible. Empirical studies show the predictions of this computation to be consistent with human motion perception.
在不断变化的视网膜图像中,运动的组织为根据物体、它们在空间中的运动以及它们的三维结构来分析环境提供了宝贵的信息来源。然而,这种运动的描述并非直接提供给我们的视觉系统;它必须从到达眼睛的强度变化模式中推断出来。本文研究了运动测量问题,我们将其表述为从变化的图像中计算瞬时二维速度场。运动的初始测量发生在强度有显著变化的位置。这些测量仅提供局部速度的一个分量,并且必须进行积分以计算二维速度场。这个积分阶段的一个基本问题是,速度场不能从变化图像中可用的信息唯一确定。基于表面通常是光滑的物理假设,我们制定了速度场平滑性的附加约束,这使得能够计算出唯一的速度场。对该计算产生正确速度场的条件的理论分析表明,该解决方案在物理上是合理的。实证研究表明,该计算的预测与人类运动感知一致。