Campbell B D, Kadner R J
Biochim Biophys Acta. 1980 Nov 5;593(1):1-10. doi: 10.1016/0005-2728(80)90002-x.
Aminoglycoside antibiotics exhibit a markedly reduced antibacterial activity under anaerobic conditions. Anaerobiosis or inhibitors of electron transport produced an extensive decrease in the uptake of dihydrostreptomycin in Escherichia coli K-12. Uptake of proline or putrescine were only slightly impaired under anaerobic conditions in the presence of glucose. Both the susceptibility to and the uptake of dihydrostreptomycin under anaerobic conditions were partially restored by addition of the alternative electron acceptor, nitrate. This stimulation required functional nitrate reductase activity. Abolition of uptake by 2,4-dinitrophenol under both aerobic and anaerobic conditions indicates that streptomycin uptake requires electron transport as well as a sufficient membrane potential. In addition, the initial rate of dihydrostreptomycin uptake was competitively and reversibly inhibited by added salts. The inhibition was relatively nonspecific with respect to the identity of salt added, being approximately dependent on the ionic strength. Although dihydrostreptomycin and polyamines mutually inhibited each other's uptake, several conditions (polyamine limitation, streptomycin uptake-deficient mutants) were found in which uptake of these two substrates was oppositely affected. Amino-glycosides thus do not appear to enter on one of the usual cellular transport systems, but perhaps utilize a component of the electron transport system.