Suppr超能文献

大肠杆菌对二氢链霉素的呼吸依赖性摄取。其不可逆性质以及缺乏单向转运过程的证据。

Respiration-dependent uptake of dihydrostreptomycin by Escherichia coli. Its irreversible nature and lack of evidence for a uniport process.

作者信息

Nichols W W, Young S N

出版信息

Biochem J. 1985 Jun 1;228(2):505-12. doi: 10.1042/bj2280505.

Abstract

The transport of [3H]dihydrostreptomycin into the cytoplasm of Escherichia coli was distinguished, by its respiration-dependent nature, from binding within the cell envelope. 1. Of the radiolabel in the cytoplasm, 70-90% was dissolved in, or quickly equilibrated with, the cytoplasmic aqueous phase because this proportion rapidly left cells treated with toluene or with butan-1-ol. 2. After a period of respiration-dependent uptake of [3H]dihydrostreptomycin, cells were washed repeatedly by centrifugation and resuspension. Radiolabel did not leave the cells at any appreciable rate. 3. Uptake of dihydrostreptomycin (at an exogenous concentration of 1 mg of base/ml) was monitored for 2h to an apparent equilibrium. Then the specific radioactivity of exogenous dihydrostreptomycin was raised without significantly altering its chemical concentration. There was no exchange of radiolabel between the exogenous pool and the cytoplasmic pool. 4. Dihydrostreptomycin was not taken up by respiring, cytoplasm-free membrane vesicles which accumulated L-proline in control experiments. These data support the view that respiration-dependent uptake of dihydrostreptomycin by E. coli is not simply a secondary translocation process such as uniport.

摘要

[3H]双氢链霉素向大肠杆菌细胞质的转运,因其对呼吸的依赖性,与在细胞包膜内的结合有所不同。1. 细胞质中的放射性标记物,70 - 90%溶解于细胞质水相或与之快速达到平衡,因为这一比例的放射性标记物会迅速从经甲苯或丁醇处理的细胞中逸出。2. 在经历一段对呼吸有依赖性的[3H]双氢链霉素摄取过程后,通过离心和重悬对细胞进行反复洗涤。放射性标记物不会以任何可观的速率从细胞中逸出。3. 监测双氢链霉素(外源浓度为1 mg碱基/ml)的摄取2小时直至明显达到平衡。然后提高外源双氢链霉素的比放射性,而不显著改变其化学浓度。外源库与细胞质库之间没有放射性标记物的交换。4. 在对照实验中积累L - 脯氨酸的有呼吸作用但无细胞质的膜囊泡不会摄取双氢链霉素。这些数据支持这样一种观点,即大肠杆菌对双氢链霉素的呼吸依赖性摄取并非简单的二级转运过程,如单向转运。

相似文献

2
On the mechanism of translocation of dihydrostreptomycin across the bacterial cytoplasmic membrane.
Biochim Biophys Acta. 1987;895(1):11-23. doi: 10.1016/s0304-4173(87)80014-9.
3
Dihydrostreptomycin accumulation in E. coli.
Nature. 1974 Oct 11;251(5475):534-6. doi: 10.1038/251534a0.
4
Relation of aerobiosis and ionic strength to the uptake of dihydrostreptomycin in Escherichia coli.
Biochim Biophys Acta. 1980 Nov 5;593(1):1-10. doi: 10.1016/0005-2728(80)90002-x.
5
Role of ribosome recycling in uptake of dihydrostreptomycin by sensitive and resistant Escherichia coli.
Biochim Biophys Acta. 1981 Jan 29;652(1):168-76. doi: 10.1016/0005-2787(81)90220-3.
6
Effect of dihydrostreptomycin on active transport in isolated bacterial membrane vesicles.
Antimicrob Agents Chemother. 1982 May;21(5):844-5. doi: 10.1128/AAC.21.5.844.
8
Bioenergetics of dihydrostreptomycin transport by Escherichia coli.
FEBS Lett. 1988 Feb 15;228(2):245-8. doi: 10.1016/0014-5793(88)80008-5.
9
In vivo and in vitro binding of dihydrostreptomycin to Escherichia coli ribosomes.
FEBS Lett. 1975 Jan 15;50(1):37-42. doi: 10.1016/0014-5793(75)81035-0.
10
Lack of accumulation of exogenous adenylyl dihydrostreptomycin by whole cells or spheroplasts of Escherichia coli.
Antimicrob Agents Chemother. 1985 Jan;27(1):114-9. doi: 10.1128/AAC.27.1.114.

引用本文的文献

1
Aminoglycoside uptake, stress, and potentiation in Gram-negative bacteria: new therapies with old molecules.
Microbiol Mol Biol Rev. 2023 Dec 20;87(4):e0003622. doi: 10.1128/mmbr.00036-22. Epub 2023 Dec 4.
2
RavA-ViaA antibiotic response is linked to Cpx and Zra2 envelope stress systems in .
Microbiol Spectr. 2023 Dec 12;11(6):e0173023. doi: 10.1128/spectrum.01730-23. Epub 2023 Oct 20.
3
Restoring susceptibility to aminoglycosides: identifying small molecule inhibitors of enzymatic inactivation.
RSC Med Chem. 2023 Jul 21;14(9):1591-1602. doi: 10.1039/d3md00226h. eCollection 2023 Sep 19.
4
Antibiotic tolerance in environmentally stressed : physical barriers and induction of a viable but nonculturable state.
Microlife. 2022 Jun 29;3:uqac010. doi: 10.1093/femsml/uqac010. eCollection 2022.
5
Bioenergetic State of Escherichia coli Controls Aminoglycoside Susceptibility.
mBio. 2023 Feb 28;14(1):e0330222. doi: 10.1128/mbio.03302-22. Epub 2023 Jan 10.
7
Identifying targets to prevent aminoglycoside ototoxicity.
Mol Cell Neurosci. 2022 May;120:103722. doi: 10.1016/j.mcn.2022.103722. Epub 2022 Mar 24.
8
Mechanosensitive Channels Mediate Hypoionic Shock-Induced Aminoglycoside Potentiation against Bacterial Persisters by Enhancing Antibiotic Uptake.
Antimicrob Agents Chemother. 2022 Feb 15;66(2):e0112521. doi: 10.1128/AAC.01125-21. Epub 2021 Dec 13.

本文引用的文献

1
Mutants of Escherichia coli requiring methionine or vitamin B12.
J Bacteriol. 1950 Jul;60(1):17-28. doi: 10.1128/jb.60.1.17-28.1950.
2
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
4
Accumulation of label from C14-streptomycin by Escherichia coli.
J Bacteriol. 1962 Jun;83(6):1193-201. doi: 10.1128/jb.83.6.1193-1201.1962.
5
THE SEQUENCE OF SOME EFFECTS OF STREPTOMYCIN IN ESCHERICHIA COLI.
Biochim Biophys Acta. 1963 Aug 13;74:476-89. doi: 10.1016/0006-3002(63)91390-8.
6
Mechanism of streptomycin action on bacteria: a unitary hypothesis.
Nature. 1961 Nov 18;192:633-7. doi: 10.1038/192633a0.
7
Uptake of streptomycin by Escherichia coli.
Nature. 1960 Jan 2;185:23-4. doi: 10.1038/185023a0.
9
Carbohydrate transport in bacteria.
Microbiol Rev. 1980 Sep;44(3):385-418. doi: 10.1128/mr.44.3.385-418.1980.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验