Suppr超能文献

胞苷到尿苷的转变对大肠杆菌A19 5 - S RNA稳定性的影响。

The effect of a cytidine-to-uridine transition on the stability of Escherichia coli A19 5-S RNA.

作者信息

Digweed M, Kumagai I, Pieler T, Erdmann V A

出版信息

Eur J Biochem. 1982 Oct;127(3):531-7. doi: 10.1111/j.1432-1033.1982.tb06904.x.

Abstract

We have been able to isolate several species of 5-S ribosomal RNA from Escherichia coli A19. These molecules were separated on the basis of their differing stabilities during electrophoresis on 12% polyacrylamide gels in 7 M urea. This differing stability is shown, in one case, to be due to a different primary sequence. We have determined the sequence of the least stable of these molecules and have found only one difference to the published sequence of E. coli A19 5-S RNA, namely a uridine in place of a cytidine at position 92. The consequent G x U base pair, formed in a normally highly stable G x C-rich region, is responsible for a drastic reduction in the stability of the molecule. This instability leads to a less constrained, more compact molecule which thus migrates faster in electrophoresis under denaturing conditions. This species of 5-S RNA is shown to make up 30% of the total 5-S RNA in the 50-S ribosomal subunits in this organism. Further structural studies were carried out using S1 nuclease digestion, sodium bisulphite modification and thermal melting analysis. All these methods indicate a 5-S RNA drastically destabilized in parts of its secondary and tertiary structure. Finally, the ability of the variant 5-S RNA to recognize and form a complex with its 50-S subunit binding proteins was examined and found to be impaired.

摘要

我们已经从大肠杆菌A19中分离出了几种5-S核糖体RNA。这些分子是根据它们在7M尿素的12%聚丙烯酰胺凝胶上电泳时不同的稳定性来分离的。在一个案例中,这种不同的稳定性被证明是由于不同的一级序列。我们已经确定了这些分子中最不稳定的那个的序列,并且发现它与已发表的大肠杆菌A19 5-S RNA序列只有一个差异,即在第92位上一个尿苷取代了一个胞苷。由此形成的G×U碱基对,出现在一个通常高度稳定的富含G×C的区域,导致了该分子稳定性的急剧降低。这种不稳定性导致分子的约束减少,更加紧凑,因此在变性条件下的电泳中迁移得更快。这种5-S RNA在该生物体的50-S核糖体亚基中占总5-S RNA的30%。使用S1核酸酶消化、亚硫酸氢钠修饰和热变性分析进行了进一步的结构研究。所有这些方法都表明一种5-S RNA在其二级和三级结构的部分区域严重不稳定。最后,研究了变异的5-S RNA识别其50-S亚基结合蛋白并与之形成复合物的能力,发现其受损。

相似文献

1
The effect of a cytidine-to-uridine transition on the stability of Escherichia coli A19 5-S RNA.
Eur J Biochem. 1982 Oct;127(3):531-7. doi: 10.1111/j.1432-1033.1982.tb06904.x.
3
An experimentally-derived model for the secondary structure of the 16S ribosomal RNA from Escherichia coli.
Nucleic Acids Res. 1980 Jun 11;8(11):2377-95. doi: 10.1093/nar/8.11.2377.
4
Escherichia coli 5S RNA A and B conformers. Characterisation by enzymatic and chemical methods.
Eur J Biochem. 1984 Oct 1;144(1):25-34. doi: 10.1111/j.1432-1033.1984.tb08426.x.
6
A native ribonucleoprotein complex from Escherichia coli ribosomes.
Proc Natl Acad Sci U S A. 1973 Mar;70(3):665-8. doi: 10.1073/pnas.70.3.665.
8
Lack of polyadenylic acid sequences in the messenger RNA of E. coli.
Biochem Biophys Res Commun. 1972 Sep 26;48(6):1593-600. doi: 10.1016/0006-291x(72)90896-0.

引用本文的文献

1
Direct 5S rRNA Assay for Monitoring Mixed-Culture Bioprocesses.
Appl Environ Microbiol. 1996 Jun;62(6):1969-76. doi: 10.1128/aem.62.6.1969-1976.1996.
2
Collection of published 5S and 5.8S ribosomal RNA sequences.
Nucleic Acids Res. 1984;12 Suppl(Suppl):r133-66. doi: 10.1093/nar/12.suppl.r133.
4
Chemical reactivity of E. coli 5S RNA in situ in the 50S ribosomal subunit.
Nucleic Acids Res. 1983 Feb 11;11(3):605-17. doi: 10.1093/nar/11.3.605.
5
Collection of published 5S, 5.8S and 4.5S ribosomal RNA sequences.
Nucleic Acids Res. 1985;13 Suppl(Suppl):r105-53. doi: 10.1093/nar/13.suppl.r105.
6
In vitro construction of yeast tRNAAsp variants: nucleotide substitutions and additions in T-stem and T-loop.
Nucleic Acids Res. 1987 Mar 11;15(5):1933-50. doi: 10.1093/nar/15.5.1933.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验