Suppr超能文献

Relaxation time, interthiol distance, and mechanism of action of ribosomal protein S1.

作者信息

Odom O W, Deng H Y, Subramanian A R, Hardesty B

出版信息

Arch Biochem Biophys. 1984 Apr;230(1):178-93. doi: 10.1016/0003-9861(84)90099-7.

Abstract

The two sulfhydryl groups of ribosomal protein S1 from Escherichia coli have been labeled with fluorescent maleimides and the distance between them has been determined by nonradiative energy transfer. This distance was found to be approximately 27 A for both free S1 and S1 bound to 30 S subunits. This value probably represents an upper limit. The position of the fluorescence emission maximum indicates that both sulfhydryl groups are in a relatively hydrophobic environment. When poly(U) is added to labeled S1, either free or in 30 S subunits, the emission maximum shifts to the red by about 3 nm but without a detectable change in the interthiol distance. S1 labeled at one or both of its sulfhydryl groups retains most of its ability to enhance poly(U)-directed polyphenylalanine synthesis. About the same concentration of poly(U) is required to give the maximum shift in fluorescence as is required to give maximum polyphenylalanine synthesis, indicating that S1 binds poly(U) during translation. The peptide initiation inhibitor aurintricarboxylic acid almost completely quenches the fluorescence from either labeled sulfhydryl groups in S1 bound to ribosomes or free in solution. This quenching probably is due to energy transfer from the labeled sulfhydryls to bound aurintricarboxylic acid. Fluorescence anisotropy measurements indicated that the C-terminal domain of S1 is relatively rigid, but retains some independent movement when attached to ribosomes. The overall data are consistent with a model in which a region near the two sulfhydryl groups in the elongated C-terminal domain functions to sequester and bind mRNA to the ribosome during peptide synthesis.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验