Kafoglis K, Hersey S J, White J F
Am J Physiol. 1984 Apr;246(4 Pt 1):G433-44. doi: 10.1152/ajpgi.1984.246.4.G433.
Conventional and liquid ion-exchange microelectrodes sensitive to K+ or pH were used to examine the response of isolated rabbit gastric glands to histamine. The epithelial cells were impaled across the basolateral membrane. The membrane potential averaged -6.1 +/- 0.6 mV and was unchanged after replacement of medium K+, Cl-, or Na+. The intracellular K+ activity (alpha iK) averaged 41.3 +/- 3.0 mM, indicating K+ accumulation by a factor of 6.8. Active accumulation of K+ was eliminated by ouabain. In contrast, histamine increased K+ activity to 55.3 +/- 3.9 mM. This stimulation was blocked by ouabain. In glands bathed in a Na+-free medium containing ouabain, addition of histamine elevated alpha iK from 12.5 +/- 0.7 to 17.1 +/- 1.1 mM. Isobutylmethylxanthine (10(-4) M) also elevated alpha iK. When impaled with pH-sensitive microelectrodes, glands exposed to histamine exhibited regions of acidity as low as pH 3. Acidification was also produced by histamine after medium Na+ had been replaced with choline. Picoprazole (H 149/94) blocked the effects of histamine on alpha iK and gland pH. The results are consistent with the view that histamine-induced acid secretion by gastric glands is associated with K+ uptake by a mechanism that is independent of Na+ transport but is inhibited by intracellular Na+. This is most likely the H+-K+-ATPase on the secretory surface of the gland cells. Evidence that some tissue K+ is bound or compartmentalized is also discussed.