Suppr超能文献

人组织型纤溶酶原激活物激活纤溶酶原的动力学。纤维蛋白的作用。

Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin.

作者信息

Hoylaerts M, Rijken D C, Lijnen H R, Collen D

出版信息

J Biol Chem. 1982 Mar 25;257(6):2912-9.

PMID:7199524
Abstract

The kinetics of the activation of Glu-plasminogen and Lys-plasminogen (P) by a two-chain form of human tissue plasminogen activator (A) were studied in purified systems, and in the presence of fibrinogen (f) and of fibrin films (F) of increasing size and surface density. The activation in the purified systems followed Michaelis-Menten kinetics with a Michaelis constant of 65 microM and a catalytic rate constant of 0.06 s-1 for Glu-plasminogen as compared to 19 microM 0.2 s-1 for Lys-plasminogen. In the presence of fibrinogen plots of 1/v versus 1/[P] or 1/v versus 1/[f] yielded straight lines with an apparent Michaelis constant at infinite [f] of 28 microM and a catalytic rate constant of 0.3 s-1 for Glu-plasminogen as compared to 1.8 microM and 0.3 s-1 for Lys-plasminogen. In the systems with fibrin, plasmin was estimated from the rate of release of 125I from 125I-labeled fibrin films. The initial rate of activation (v) was calculated and Lineweaver-Burk plots of 1/v versus 1/[P] or 1/v versus 1/[F] yielded straight lines. Activation occurred with an intrinsic Michaelis constant of 0.16 microM and a catalytic rate constant of 0.1 s-1 for Glu-plasminogen as compared to 0.02 microM and 0.2 s-1 for Lys-plasminogen. The kinetic analysis suggested that the activation in the presence of fibrin occurs through binding of an activator molecule to the clot surface and subsequent addition of plasminogen (sequential ordered mechanism) to form a cyclic ternary complex. The Low Michaelis constant in the presence of fibrin allows efficient plasminogen activation on a fibrin clot, while its high value in the absence of fibrin prevents efficient activation in plasma.

摘要

在纯化系统中,以及在存在纤维蛋白原(f)和尺寸及表面密度不断增加的纤维蛋白膜(F)的情况下,研究了双链形式的人组织纤溶酶原激活剂(A)对谷氨酸纤溶酶原和赖氨酸纤溶酶原(P)的激活动力学。在纯化系统中,激活遵循米氏动力学,谷氨酸纤溶酶原的米氏常数为65微摩尔,催化速率常数为0.06秒-1,而赖氨酸纤溶酶原的米氏常数为19微摩尔,催化速率常数为0.2秒-1。在存在纤维蛋白原的情况下,1/v对1/[P]或1/v对1/[f]的作图得到直线,在无限[f]时谷氨酸纤溶酶原的表观米氏常数为28微摩尔,催化速率常数为0.3秒-1,而赖氨酸纤溶酶原的表观米氏常数为1.8微摩尔,催化速率常数为0.3秒-1。在有纤维蛋白的系统中,通过从125I标记的纤维蛋白膜释放125I的速率来估算纤溶酶。计算了初始激活速率(v),1/v对1/[P]或1/v对1/[F]的Lineweaver-Burk作图得到直线。谷氨酸纤溶酶原的激活发生时,内在米氏常数为0.16微摩尔,催化速率常数为0.1秒-1,而赖氨酸纤溶酶原的内在米氏常数为0.02微摩尔,催化速率常数为0.2秒-1。动力学分析表明,在有纤维蛋白存在时的激活是通过激活剂分子与凝块表面结合,随后添加纤溶酶原(顺序有序机制)形成环状三元复合物来实现的。在有纤维蛋白存在时较低的米氏常数允许在纤维蛋白凝块上有效地激活纤溶酶原,而在没有纤维蛋白时其高值则阻止了在血浆中的有效激活。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验