Loosemore M J, Cohen S A, Pratt R F
Biochemistry. 1980 Aug 19;19(17):3990-5. doi: 10.1021/bi00558a016.
The kinetics of the inactivation of Bacillus cereus beta-lactamase I by 6 beta-bromopenicillanic acid are described. Loss of beta-lactamase activity is accompanied by a decrease in protein fluorescence, by the appearance of a protein-bound chromophore at 326 nm, and by loss of tritium from 6 alpha-[3H]-6 beta-bromopenicillanic acid. It is shown that all of the above changes probably have the same rate-determining step. The inactivation reaction is competitively inhibited by cephalosporin C, a competitive inhibitor of this enzyme, and by covalently bound clavulanic acid, suggesting that 6 beta-bromopenicillanic acid reacts directly with the beta-lactamase active site. It is proposed that this inhibitor reacts initially as a normal substrate and that the rate-determining step of the inactivation is acylation of the enzyme. A rapid irreversible inactivation reaction rather than normal hydrolysis of the acyl-enzyme then follows acylation; 6 beta-bromopenicillanic acid is thus a suicide substrate.