Suppr超能文献

Transition temperatures of the electrical activity of ion channels in the nerve membrane.

作者信息

Romey G, Chicheportiche R, Lazdunski M

出版信息

Biochim Biophys Acta. 1980 Nov 18;602(3):610-20. doi: 10.1016/0005-2736(80)90339-9.

Abstract

The temperature dependence of some of the electrical characteristics of neuronal membranes from Aplysia giant neurons and crustacean and cuttlefish giant axons has been analyzed. Arrhenius plots for the maximum rate of depolarization of (V+max) or repolarization (V-max) of the action potential, for the resting membrane conductance, and for the speed of propagation of the action potential, exhibited clear breaks at characteristic temperatures between 17 and 20 degrees C. Lobster giant axons and frog nodes of Ranvier were voltage-clamped at different temperatures between 5 and 30 degrees C. Arrhenius plots for relaxation times related to the opening and closing processes affecting the Na+ and K+ channels were linear. No 'transition' temperature was detected. However, clear-cut changes in (Formula: see text) Na+ and K+ currents, were consistantly observed around 18 degrees C. Values for (Formula: see text) plateaued above 18 degrees C, then decreased gradually as a function of reduced temperature. Variations in temperature between 1 and 30 degrees C did not alter the binding properties of [3H]tetrodotoxin to a purified crab axonal membrane. Pharmacological properties of the Na+ channel are sensitive to temperature. The temperature-dependent effect of veratridine has been studied and indicates a change in properties of the Na+ channel below 20 degrees C. These results support the possibility that the fluidity of membrane lipids in the ionic channel microenvironment may influence the degree to which the channel can open.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验