Suppr超能文献

Altered oxidative metabolism in selenium-deficient rat granulocytes.

作者信息

Baker S S, Cohen H J

出版信息

J Immunol. 1983 Jun;130(6):2856-60.

PMID:6304192
Abstract

Rats fed a selenium-deficient diet for 12 to 15 wk became selenium-depleted, measured by the selenium content of liver and granulocytes. The activity of granulocyte glutathione peroxidase, a selenoenzyme, in deficient rats was 11% of the activity in replete rat granulocytes. When stimulated with an H2O2 generating system, the HMPS activity of the deficient granulocytes was 50% of replete; however, when stimulated with methylene blue, the HMPS activity in deficient and replete granulocytes was the same. When granulocytes were incubated with PMA or OPZ, deficient granulocytes initially had the same O-2-generating activity as replete granulocytes; however, with increasing duration of stimulation, granulocytes from deficient rats generated less O-2 than replete rats. After 20 min in an H2O2-generating system, deficient granulocytes stimulated with PMA or OPZ generated less O-2 than replete granulocytes. These results indicate that deficient granulocytes did not metabolize H2O2 as well as replete granulocytes and that H2O2 caused damage to the O2-generating system. Measurement of O-2 generation in membrane-enriched particles showed the above effects were due to inactivation of the NADPH-dependent O2-generating system. Deficient granulocytes stimulated with OPZ for 20 min had 70% less membrane O-2-generating activity than controls. In addition, when membrane-enriched particles were made from cells that had been stressed with an H2O2-generating system, NADPH-dependent O-2-generating activity in deficient granulocytes was 50% of replete. In selenium-deficient granulocytes with low GSH-Px activity, prolonged incubation with stimulants and prior incubations with an H2O2-generating system caused loss of activity of the membrane-bound, NADPH-dependent, O-2-generating system.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验