Gutman M, Nachliel E, Gershon E, Giniger R
Eur J Biochem. 1983 Jul 15;134(1):63-9. doi: 10.1111/j.1432-1033.1983.tb07531.x.
The dynamics of proton transfer between a surface-attached acidic moiety and the bulk of the solution was measured using the laser-induced proton pulse technique. [Gutman, M., Huppert, D. and Pines, E. (1981) J. Am. Chem. Soc. 103, 3709-3713]. The model system for this study consists of pH indicators (either neutral red or bromcresol green) adsorbed on Brij 58 micelles, as defined targets for protonation and a non-adsorbed proton emitter (2-naphthol-3,6-disulfonate) for generation of protons in bulk. The reaction was measured with 50-ns time resolution over a time period of about 200 microseconds. The results were analyzed by a numerical solution of the coupled nonlinear differential equation corresponding with the reaction system. [Gutman, M., et al. (1983) J. Am. Chem. Soc. 105, 2210-2216]. Quantitative analysis reveals two independent reactions which govern the observed dynamics: (a) a diffusion-controlled reaction between the proton and the surface targets; (b) translocation of the protonated target between the hydration layer of the interface and a more hydrophobic one. The contribution of the translocation reaction to the dynamics of surface protonation is more pronounced for compounds like carboxylates or phenolates which increase their hydrophobicity upon protonation. Amines and azoaromatic structures are more hydrophilic in their protonated states, the dynamics of their protonation is less affected by post-protonation distribution within the microenvironments of the interface. The interrelation between the partial rate constants and the macroscopic time constants and equilibrium parameters is analyzed.
使用激光诱导质子脉冲技术测量了表面附着的酸性部分与大量溶液之间质子转移的动力学。[古特曼,M.,胡珀特,D.和派恩斯,E.(1981年)《美国化学会志》103,3709 - 3713]。本研究的模型系统由吸附在布里杰58胶束上的pH指示剂(中性红或溴甲酚绿)组成,作为质子化的特定目标,以及一种非吸附性质子发射体(2 - 萘酚 - 3,6 - 二磺酸盐)用于在大量溶液中产生质子。在约200微秒的时间段内以50纳秒的时间分辨率测量该反应。通过与反应系统对应的耦合非线性微分方程的数值解来分析结果。[古特曼,M.等人(1983年)《美国化学会志》105,2210 - 2216]。定量分析揭示了两个独立的反应,它们控制着观察到的动力学:(a)质子与表面目标之间的扩散控制反应;(b)质子化目标在界面水化层和更疏水层之间的转移。对于像羧酸盐或酚盐这样质子化后疏水性增加的化合物,转移反应对表面质子化动力学的贡献更为显著。胺和偶氮芳烃结构在质子化状态下更亲水,它们质子化的动力学受界面微环境中质子化后分布的影响较小。分析了部分速率常数与宏观时间常数和平衡参数之间的相互关系。