Englander J J, Rogero J R, Englander S W
J Mol Biol. 1983 Sep 5;169(1):325-44. doi: 10.1016/s0022-2836(83)80186-7.
Hydrogen-exchange studies locate a set of seven allosterically sensitive amide NH protons side by side around two turns of the F-FG helical segment in the hemoglobin beta chain. Some of these protons are on the aqueous protein surface and some deeply inside, yet they all exchange with solvent protons at similar rates. Further, they move in unison to a new common rate when hemoglobin changes its allosteric form. These observations and analogous results for other proteins appear to be inconsistent with penetration-dependent models which relate H-exchange rate to solvent accessibility in the native state. Rather, these results point to sizeable fluctuational distortions that make small sets of protons more or less equally accessible in some transient H-exchange transition state, as visualized in the local unfolding model. The set of allosterically sensitive protons studied here exchanges 30-fold faster in liganded hemoglobin than in the deoxy form. In terms of the unfolding model, this means that the F-FG structure is relatively destabilized in oxyhemoglobin, so that the allosterically linked change in structural free energy at F-FG favors the deoxy state. The 30-fold change in H-exchange rate suggests a contribution to the allosteric free energy by this segment of 2 kcal (1 cal = 4.184 J). These experiments utilized a labeling technique, described earlier, that selectively places tritium on sites whose H-exchange rates are sensitive to the protein functional state, and used a method introduced by Rosa & Richards (1979,1981) to locate this label in the protein. The latter method, which rapidly separates protein fragments under conditions that can preserve exchangeable label, was here brought to a more quantitative level. Taken together, these techniques provide a "functional labeling" method capable of selectively labeling and identifying protein segments that participate in functional interactions.
氢交换研究表明,在血红蛋白β链的F-FG螺旋段的两圈周围,有一组七个对变构敏感的酰胺NH质子并排排列。这些质子中有些位于蛋白质的水相表面,有些则深埋在内部,但它们与溶剂质子的交换速率相似。此外,当血红蛋白改变其变构形式时,它们会一致地转变为新的共同速率。这些观察结果以及其他蛋白质的类似结果似乎与依赖穿透的模型不一致,该模型将氢交换速率与天然状态下的溶剂可及性联系起来。相反,这些结果表明存在相当大的波动畸变,使得在某些瞬态氢交换过渡态中,少量质子或多或少具有相同的可及性,这在局部解折叠模型中可以看到。这里研究的这组对变构敏感的质子在结合配体的血红蛋白中的交换速度比在脱氧形式中快30倍。就解折叠模型而言,这意味着F-FG结构在氧合血红蛋白中相对不稳定,因此F-FG处结构自由能的变构连接变化有利于脱氧状态。氢交换速率30倍的变化表明该片段对变构自由能的贡献为2千卡(1卡 = 4.184焦耳)。这些实验采用了一种先前描述的标记技术,该技术选择性地将氚放置在氢交换速率对蛋白质功能状态敏感的数据上,并使用了Rosa和Richards(1979年,1981年)引入的方法在蛋白质中定位该标记。后一种方法在能够保留可交换标记的条件下快速分离蛋白质片段,在此将其提升到了更定量的水平。总之,这些技术提供了一种“功能标记”方法,能够选择性地标记和识别参与功能相互作用的蛋白质片段。