Suppr超能文献

大肠杆菌对苯丙酸及其3-羟基衍生物的分解代谢

Catabolism of phenylpropionic acid and its 3-hydroxy derivative by Escherichia coli.

作者信息

Burlingame R, Chapman P J

出版信息

J Bacteriol. 1983 Jul;155(1):113-21. doi: 10.1128/jb.155.1.113-121.1983.

Abstract

A number of laboratory strains and clinical isolates of Escherichia coli utilized several aromatic acids as sole sources of carbon for growth. E. coli K-12 used separate reactions to convert 3-phenylpropionic and 3-(3-hydroxyphenyl)propionic acids into 3-(2,3-dihydroxyphenyl)propionic acid which, after meta-fission of the benzene nucleus, gave succinate, pyruvate, and acetaldehyde as products. Enzyme assays and respirometry showed that all enzymes of this branched pathway were inducible and that syntheses of enzymes required to convert the two initial growth substrates into 3-(2,3-dihydroxyphenyl)propionate are under separate control. E. coli K-12 also grew with 3-hydroxycinnamic acid as sole source of carbon; the ability of cells to oxidize cinnamic and 3-phenylpropionic acids, and hydroxylated derivatives, was investigated. The lactone of 4-hydroxy-2-ketovaleric acid was isolated from enzymatic reaction mixtures and its properties, including optical activity, were recorded.

摘要

许多大肠杆菌的实验室菌株和临床分离株利用几种芳香酸作为唯一碳源进行生长。大肠杆菌K-12通过不同反应将3-苯丙酸和3-(3-羟基苯基)丙酸转化为3-(2,3-二羟基苯基)丙酸,该酸在苯核间位裂解后产生琥珀酸、丙酮酸和乙醛作为产物。酶分析和呼吸测定表明,这条分支途径的所有酶都是可诱导的,并且将两种初始生长底物转化为3-(2,3-二羟基苯基)丙酸所需的酶的合成受不同调控。大肠杆菌K-12也能以3-羟基肉桂酸作为唯一碳源生长;研究了细胞氧化肉桂酸、3-苯丙酸及其羟基化衍生物的能力。从酶促反应混合物中分离出4-羟基-2-酮戊酸内酯,并记录了其性质,包括旋光性。

相似文献

1
Catabolism of phenylpropionic acid and its 3-hydroxy derivative by Escherichia coli.
J Bacteriol. 1983 Jul;155(1):113-21. doi: 10.1128/jb.155.1.113-121.1983.
3
Isolation and characterization of Escherichia coli mutants defective for phenylpropionate degradation.
J Bacteriol. 1986 Oct;168(1):55-64. doi: 10.1128/jb.168.1.55-64.1986.
5
Cultivation of Escherichia coli with mixtures of 3-phenylpropionic acid and glucose: steady-state growth kinetics.
Appl Environ Microbiol. 1997 Jul;63(7):2619-24. doi: 10.1128/aem.63.7.2619-2624.1997.
6
Degradation of 3-phenylpropionic acid by Haloferax sp. D1227.
Extremophiles. 1999 Jan;3(1):45-53. doi: 10.1007/s007920050098.
7
Aerobic biosynthesis of hydrocinnamic acids in Escherichia coli with a strictly oxygen-sensitive enoate reductase.
Metab Eng. 2016 May;35:75-82. doi: 10.1016/j.ymben.2016.02.002. Epub 2016 Feb 9.
9
Degradation of aromatic carboxylic acids by acinetobacter.
Syst Appl Microbiol. 1983;4(3):313-25. doi: 10.1016/S0723-2020(83)80018-6.
10
Efficient production of phenylpropionic acids by an amino-group-transformation biocatalytic cascade.
Biotechnol Bioeng. 2020 Mar;117(3):614-625. doi: 10.1002/bit.27241. Epub 2019 Dec 20.

引用本文的文献

1
MicrobeRX: a tool for enzymatic-reaction-based metabolite prediction in the gut microbiome.
Microbiome. 2025 Mar 19;13(1):78. doi: 10.1186/s40168-025-02070-5.
4
Transcriptome profiling of Paraburkholderia aromaticivorans AR20-38 during ferulic acid bioconversion.
AMB Express. 2022 Nov 26;12(1):148. doi: 10.1186/s13568-022-01487-7.
5
Isocitrate binds to the itaconic acid-responsive LysR-type transcriptional regulator RipR in Salmonella pathogenesis.
J Biol Chem. 2022 Nov;298(11):102562. doi: 10.1016/j.jbc.2022.102562. Epub 2022 Oct 2.
7
Microbiome and Metabolomics Reveal the Effects of Different Feeding Systems on the Growth and Ruminal Development of Yaks.
Front Microbiol. 2021 Jun 22;12:682989. doi: 10.3389/fmicb.2021.682989. eCollection 2021.
8
A role for gut microbiota in host niche differentiation.
ISME J. 2020 Jul;14(7):1675-1687. doi: 10.1038/s41396-020-0640-4. Epub 2020 Apr 1.
9
Functional genomic analysis of bacterial lignin degraders: diversity in mechanisms of lignin oxidation and metabolism.
Appl Microbiol Biotechnol. 2020 Apr;104(8):3305-3320. doi: 10.1007/s00253-019-10318-y. Epub 2020 Feb 22.

本文引用的文献

1
THE BACTERIAL DEGRADATION OF CATECHOL.
Biochem J. 1965 May;95(2):466-74. doi: 10.1042/bj0950466.
2
THE MICROBIAL METABOLISM OF CINNAMIC ACID.
Can J Microbiol. 1964 Apr;10:175-85. doi: 10.1139/m64-025.
3
Bacterial conversion of phenylalanine and aromatic carboxylic acids into dihydrodiols.
Biochem J. 1981 Mar 15;194(3):679-84. doi: 10.1042/bj1940679.
4
Catabolism of 3- and 4-hydroxyphenylacetate by the 3,4-dihydroxyphenylacetate pathway in Escherichia coli.
J Bacteriol. 1980 Jul;143(1):302-6. doi: 10.1128/jb.143.1.302-306.1980.
5
Kinetic aspects of the growth of Klebsiella aerogenes with some benzenoid carbon sources.
J Gen Microbiol. 1967 Feb;46(2):213-24. doi: 10.1099/00221287-46-2-213.
6
The metabolism of beta-phenylpropionic acid by an Achromobacter.
Biochem J. 1965 Dec;97(3):643-50. doi: 10.1042/bj0970643.
7
The separation of 2,4-dinitrophenylhydrazones by thin-layer chromatography.
J Chromatogr. 1965 Dec;20(3):528-40. doi: 10.1016/s0021-9673(01)97455-2.
10
Degradation of DOPA by intestinal microorganisms in vitro.
Acta Pharmacol Toxicol (Copenh). 1971;30(1):115-21. doi: 10.1111/j.1600-0773.1971.tb00640.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验