Mohandas N, Chasis J A, Shohet S B
Semin Hematol. 1983 Jul;20(3):225-42.
A membrane skeleton consisting of a structural matrix of spectrin, actin, and band 4.1 linked to band 3 in the fluid bilayer through ankyrin appears to be responsible for many of the material properties of the red cell membrane. In response to externally applied forces, the membrane behaves as a solid, a semisolid, or a liquid, depending on the magnitude and duration of the applied forces. Under physiologic conditions, the normal skeleton permits the red cells to undergo marked reversible deformations as a viscoelastic material. Perturbations of this skeletal assembly, as a result of molecular defects in skeletal components, lead to various altered membrane material properties and altered behavior in the circulation. The altered material properties include increased elastic shear modulus, irreversible membrane flow, or even membrane yield, resulting in cell fragmentation. These alterations in turn lead to changes in cellular deformability either as a result of increased membrane rigidity or decreased surface-area-to-volume ratio, secondary to cell fragmentation. As cellular deformability is one of the major parameters that determines red cell life span, skeletal dysfunction leading to decreases in deformability can account for increased red cell destruction in many congenital and hereditary hemolytic anemias.
由血影蛋白、肌动蛋白和4.1带组成的膜骨架,通过锚蛋白与流体双分子层中的3带相连,似乎决定了红细胞膜的许多物质特性。响应外部施加的力时,膜的表现取决于所施加力的大小和持续时间,可为固体、半固体或液体。在生理条件下,正常的骨架使红细胞作为一种粘弹性材料能够经历显著的可逆变形。由于骨架成分的分子缺陷导致这种骨架组装受到干扰,会导致各种膜物质特性改变以及在循环中的行为改变。改变的物质特性包括弹性剪切模量增加、不可逆的膜流动,甚至膜屈服,从而导致细胞破碎。这些改变进而由于膜刚性增加或细胞破碎继发的表面积与体积比降低而导致细胞变形性改变。由于细胞变形性是决定红细胞寿命的主要参数之一,导致变形性降低的骨架功能障碍可解释许多先天性和遗传性溶血性贫血中红细胞破坏增加的原因。