Suppr超能文献

皮马印第安人在体内和体外肥胖与最大胰岛素刺激的葡萄糖摄取之间的关系。

Relationship between obesity and maximal insulin-stimulated glucose uptake in vivo and in vitro in Pima Indians.

作者信息

Bogardus C, Lillioja S, Mott D, Reaven G R, Kashiwagi A, Foley J E

出版信息

J Clin Invest. 1984 Mar;73(3):800-5. doi: 10.1172/JCI111274.

Abstract

Previous studies have left unanswered whether human obesity, independent of glucose intolerance, is associated with a "postreceptor" defect in insulin action. We have studied the relationship between the degree of obesity (as estimated by underwater weighing) and the maximal insulin-stimulated glucose disposal rate (M) in vivo in 52 glucose-tolerant Pima Indian males. The relationship was examined independently of differences in age and maximal oxygen uptake (an estimate of "physical fitness"). The maximal insulin-stimulated glucose transport rate (MTR) was also measured in isolated abdominal adipocytes from the same subjects to determine whether differences in M could be explained by differences in glucose transport. The results showed that there was a large variance in M and MTR among these glucose-tolerant subjects. M was better correlated with glucose storage rates than with oxidation rates, as estimated by indirect calorimetry. The most obese subjects had only a 20% lower mean M and 30% lower MTR than the most lean subjects. The lower M in the obese subjects was due to both lower glucose oxidation and storage rates. There was no significant, independent correlation between age or degree of obesity and M or MTR. The maximal oxygen uptake (VO2 max) appeared to independently account for 20% of the variance observed in M. MTR was only weakly correlated with M (r = 0.36, P less than 0.02). We concluded that differences in M in these glucose-tolerant subjects must be explained by factor(s) other than maximal oxygen uptake, age, maximal insulin-stimulated glucose transport in vitro, or degree of adiposity per se.

摘要

先前的研究尚未解答人类肥胖(独立于葡萄糖不耐受之外)是否与胰岛素作用中的“受体后”缺陷相关。我们研究了52名糖耐量正常的皮马印第安男性体内肥胖程度(通过水下称重估算)与最大胰岛素刺激的葡萄糖处置率(M)之间的关系。该关系在独立于年龄差异和最大摄氧量(“身体素质”的一种估算)的情况下进行了研究。还测量了来自同一受试者的分离腹部脂肪细胞中的最大胰岛素刺激的葡萄糖转运率(MTR),以确定M的差异是否可以用葡萄糖转运的差异来解释。结果表明,在这些糖耐量正常的受试者中,M和MTR存在很大差异。通过间接量热法估算,M与葡萄糖储存率的相关性比与氧化率的相关性更好。最肥胖的受试者的平均M比最瘦的受试者仅低20%,MTR低30%。肥胖受试者中较低的M是由于葡萄糖氧化和储存率均较低。年龄或肥胖程度与M或MTR之间没有显著的独立相关性。最大摄氧量(VO2 max)似乎独立地解释了M中观察到的20%的差异。MTR与M仅呈弱相关(r = 0.36,P小于0.02)。我们得出结论,这些糖耐量正常的受试者中M的差异必须由最大摄氧量、年龄、体外最大胰岛素刺激的葡萄糖转运或肥胖程度本身以外的因素来解释。

相似文献

4
Glucose uptake and insulin action in human adipose tissue--influence of BMI, anatomical depot and body fat distribution.
Int J Obes Relat Metab Disord. 2002 Jan;26(1):17-23. doi: 10.1038/sj.ijo.0801850.
5
Insulin signal transduction and glucose transport in human adipocytes: effects of obesity and low calorie diet.
Diabetologia. 2002 Aug;45(8):1128-35. doi: 10.1007/s00125-002-0875-9. Epub 2002 Jun 22.
7
Skeletal muscle membrane lipid composition is related to adiposity and insulin action.
J Clin Invest. 1995 Dec;96(6):2802-8. doi: 10.1172/JCI118350.
8
Elevated plasma nonesterified fatty acids are associated with deterioration of acute insulin response in IGT but not NGT.
Am J Physiol Endocrinol Metab. 2003 Jun;284(6):E1156-61. doi: 10.1152/ajpendo.00427.2002. Epub 2003 Feb 11.
9

引用本文的文献

3
skeletal muscle models for type 2 diabetes.
Biophys Rev (Melville). 2022 Sep;3(3):031306. doi: 10.1063/5.0096420. Epub 2022 Sep 13.
4
Adaptation of Insulin Clearance to Metabolic Demand Is a Key Determinant of Glucose Tolerance.
Diabetes. 2021 Feb;70(2):377-385. doi: 10.2337/db19-1152. Epub 2020 Oct 19.
5
VOmax is associated with measures of energy expenditure in sedentary condition but does not predict weight change.
Metabolism. 2019 Jan;90:44-51. doi: 10.1016/j.metabol.2018.10.012. Epub 2018 Oct 29.
6
Global transcriptome profiling identifies KLF15 and SLC25A10 as modifiers of adipocytes insulin sensitivity in obese women.
PLoS One. 2017 Jun 1;12(6):e0178485. doi: 10.1371/journal.pone.0178485. eCollection 2017.
7
Impaired glucose metabolism and exercise capacity with muscle-specific glycogen synthase 1 (gys1) deletion in adult mice.
Mol Metab. 2016 Jan 21;5(3):221-232. doi: 10.1016/j.molmet.2016.01.004. eCollection 2016 Mar.
8
Dynamic PET imaging reveals heterogeneity of skeletal muscle insulin resistance.
J Clin Endocrinol Metab. 2014 Jan;99(1):E102-6. doi: 10.1210/jc.2013-2095. Epub 2013 Dec 20.
9
Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis.
Science. 2013 Jan 11;339(6116):172-7. doi: 10.1126/science.1230721.
10
HLA-DRB1 reduces the risk of type 2 diabetes mellitus by increased insulin secretion.
Diabetologia. 2011 Jul;54(7):1684-92. doi: 10.1007/s00125-011-2122-8. Epub 2011 Apr 12.

本文引用的文献

1
Immunoassay of endogenous plasma insulin in man.
J Clin Invest. 1960 Jul;39(7):1157-75. doi: 10.1172/JCI104130.
2
Influences of glucose loading and of injected insulin on hepatic glucose output.
Ann N Y Acad Sci. 1959 Sep 25;82:420-30. doi: 10.1111/j.1749-6632.1959.tb44923.x.
3
Dose-response characteristics for effects of insulin on production and utilization of glucose in man.
Am J Physiol. 1981 Jun;240(6):E630-9. doi: 10.1152/ajpendo.1981.240.6.E630.
5
Adipocytes and adiposity in adults.
Am J Clin Nutr. 1981 Sep;34(9):1798-803. doi: 10.1093/ajcn/34.9.1798.
7
Insulin treatment reverses the insulin resistance of type II diabetes mellitus.
Diabetes Care. 1982 Jul-Aug;5(4):353-63. doi: 10.2337/diacare.5.4.353.
8
10
Coated charcoal immunoassay of insulin.
J Clin Endocrinol Metab. 1965 Oct;25(10):1375-84. doi: 10.1210/jcem-25-10-1375.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验