Junqueira L C, Montes G S
Arch Histol Jpn. 1983 Dec;46(5):589-629. doi: 10.1679/aohc.46.589.
The purpose of this article is to review our knowledge to date of collagen-proteoglycan interaction. Many topics have been taken into account in order to provide a reasonably complete picture of this highly complex subject. Basic information about collagen biology, and an overview of the current concepts and advances regarding proteoglycans, have served as a basis to elucidate collagen-proteoglycan interaction. The bases of some methods of study have been reviewed in order to provide a fuller understanding of the results that are cited in this article. The experimental models and biological examples discussed herein demonstrate that collagen-proteoglycan interaction is essential to the extracellular matrix resiliency. The organization of these macromolecules is critical: collagen molecules become assembled into fibrils, fibrils aggregate to form fibers, fibers associate into bundles of fibers, and proteoglycans in the ground substance play a major role in the ordering process; on the other hand, glycosaminoglycans (GAGs) are composed of repeating monomers--GAGs linked to a same protein core form a proteoglycan--which, in turn, may bind to a hyaluronic acid molecule to form a proteoglycan aggregate together with other proteoglycans. Further growth of these complex macromolecules at higher hierarchical levels occurs by interaction of collagen with proteoglycans. A striking correlation between the tissue distribution of the genetically-distinct types of interstitial collagen and the occurrence of the different GAGs (which argues strongly in favour of a specific interaction) is demonstrated comprehensively in this review. Tissues composed of collagen type I possess small amounts of proteoglycans which contain almost exclusively dermatan sulfate; while tissues containing only collagen type II have high amounts of chondroitin sulfates. Collagen type III is the major fibrillary constituent of tissues that possess intermediate levels of proteoglycans, which contain great amounts of heparan sulfate. The histochemical and ultrastructural equivalents of these interactions have been emphasized in order to permit an interpretation of the morphologic aspects that can contribute to distinguishing these macromolecular components when studying tissue sections either under the light microscope or by aid of electron microscopy.
本文旨在回顾我们目前对胶原蛋白与蛋白聚糖相互作用的认识。为了对这个高度复杂的主题提供一个合理完整的描述,我们考虑了许多主题。关于胶原蛋白生物学的基本信息,以及关于蛋白聚糖的当前概念和进展的概述,为阐明胶原蛋白与蛋白聚糖的相互作用奠定了基础。我们回顾了一些研究方法的基础,以便更全面地理解本文引用的结果。本文讨论的实验模型和生物学实例表明,胶原蛋白与蛋白聚糖的相互作用对于细胞外基质的弹性至关重要。这些大分子的组织方式至关重要:胶原蛋白分子组装成原纤维,原纤维聚集形成纤维,纤维相互关联形成纤维束,而基质中的蛋白聚糖在排序过程中起主要作用;另一方面,糖胺聚糖(GAGs)由重复的单体组成——与同一蛋白核心相连的GAGs形成蛋白聚糖——蛋白聚糖又可能与透明质酸分子结合,与其他蛋白聚糖一起形成蛋白聚糖聚集体。这些复杂大分子在更高层次上的进一步生长是通过胶原蛋白与蛋白聚糖的相互作用实现的。在这篇综述中全面展示了基因不同类型的间质胶原蛋白的组织分布与不同GAGs的出现之间的显著相关性(这有力地支持了特定相互作用的观点)。由I型胶原蛋白组成的组织含有少量的蛋白聚糖,几乎只含有硫酸皮肤素;而仅含有II型胶原蛋白的组织含有大量的硫酸软骨素。III型胶原蛋白是含有中等水平蛋白聚糖(含有大量硫酸乙酰肝素)的组织的主要纤维成分。这些相互作用的组织化学和超微结构等效物已得到强调,以便在光学显微镜或借助电子显微镜研究组织切片时,能够解释有助于区分这些大分子成分的形态学方面。