Suppr超能文献

Effect of contact material on vibration-induced insulin aggregation.

作者信息

Feingold V, Jenkins A B, Kraegen E W

出版信息

Diabetologia. 1984 Sep;27(3):373-8. doi: 10.1007/BF00304853.

Abstract

The tendency of insulin to form insoluble aggregates is a major obstacle to the development of implantable insulin infusion systems for treatment of insulin-deficient diabetic patients. A test system was developed to examine the kinetics of insulin aggregation under controlled conditions of temperature, vibration and contact material in an effort to provide design criteria for minimising aggregation. The contact materials tested were all potentially suitable for pump reservoirs on engineering criteria and included metals (stainless steel, titanium and a titanium alloy) and various plastics (polypropylene, polytetrafluoroethylene, polyvinylchloride, polyamide, cellulose butyrate and silicone elastomer). The rate of insulin aggregation was markedly affected by the nature of the contact material. Hydrophilic materials, particularly polyamide and cellulose butyrate (2% of total insulin aggregated after 96 h vibration), appeared more compatible with insulin stability than did hydrophobic ones, such as polypropylene (16% aggregation) and polyvinylchloride (37% aggregation). A specially formulated 'pump' insulin preparation, stabilised by addition of polyethylenepolypropyleneglycol, was significantly superior (three to five times more stable) to a regular neutral insulin formulation under most, but not all, conditions. Standard clinical syringes (polypropylene) performed poorly with both insulin formulations but especially with the neutral regular insulin (100% aggregation after 96 h vibration). In addition to physical aggregates, significant amounts (5%-30%) of the insulin remaining in solution were no longer detectable by immuno- or receptorassay in all materials tested.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验