Gill S J, Gaud H T, Wyman J, Barisas B G
Biophys Chem. 1978 Mar;8(1):53-9. doi: 10.1016/0301-4622(78)85022-4.
The ligand binding curve for a macromolecular system presents the average number of ligand molecules bound per macromolecule as a function of the chemical potential or the logarithm of the ligand concentration. We show that various observable properties of this curve, for example its asymptotes and derivatives, are expressible in terms of linear combinations of the mole fractions alphai of macromolecules binding i molecules of ligand. Whenever enough such properties of the binding curve are known, the linear equations in alphai can be solved to give the mole fractions of each of the various macromolecular species. An application of these results is that a Hill plot for hemoglobin-ligand equilibrium where the asymptotes approach unit slope can be made to yield the four Adair constants by a simple algebraic method. A second use is that a knowledge of the first and second derivatives of the binding curve at points along the curve can yield the species fractions as functions of the degree of saturation without direct knowledge of the ligand binding constants. These methods are illustrated by some numerical examples.
大分子系统的配体结合曲线呈现出每个大分子结合的配体分子的平均数量与化学势或配体浓度的对数之间的函数关系。我们表明,该曲线的各种可观测性质,例如其渐近线和导数,都可以用结合(i)个配体分子的大分子的摩尔分数(\alpha_i)的线性组合来表示。只要知道结合曲线的足够多这样的性质,就可以求解(\alpha_i)中的线性方程,以得到各种大分子物种中每一种的摩尔分数。这些结果的一个应用是,对于血红蛋白 - 配体平衡的希尔图,其中渐近线接近单位斜率,可以通过一种简单的代数方法得到四个阿代尔常数。第二个用途是,在不直接了解配体结合常数的情况下,知道沿曲线各点处结合曲线的一阶和二阶导数,就可以得到物种分数作为饱和度的函数。通过一些数值例子说明了这些方法。