Suppr超能文献

配体结合曲线。使用双曲线函数来表达滴定曲线。

Curves of ligand binding. The use of hyperbolic functions for expressing titration curves.

作者信息

Dixon H B

出版信息

Biochem J. 1974 Mar;137(3):443-7. doi: 10.1042/bj1370443.

Abstract
  1. The dependences of the concentrations of the non-ligated, uni-ligated and bi-ligated forms of a molecule that binds two molecules of ligand are expressed as functions of the logarithm of free ligand concentration by means of hyperbolic functions. Expressions are also given for the saturation both of an individual site and of the molecule as a whole. This form of expression allows derivation of the following points. 2. The sharpness of bell-shaped curves of concentration of the uni-ligated form is analysed in terms of the heights of their points of inflexion; these can rise to 1/ radical2 of the curve. 3. A single group can exhibit a doubly sigmoid saturation curve if this group and another have comparable affinities for a ligand, and if ligand binding at one of them diminishes the affinity at the other. If the molecular pK values pK(1) and pK(2) for the first and second molecules of ligand are called pK*+/-logm, so that K*(2)=K(1)K(2) and m(2)=K(1)/K(2), then the doubly sigmoid curve can be represented by the sum of two independent one-site saturation curves, in general of unequal height, of pK values pK*+/-log(1/2)[m+ radical(m(2)-4)]. The error in such representation is small either if the mutual interaction between the groups (i.e. m) is large, or if the groups have very similar affinities for the ligand. 4. The sum of two one-site saturation curves, again of pK values of pK*+/-log(1/2)[m+ radical(m(2)-4)] but of equal heights, gives a precise value for the total saturation, provided that the binding of one molecule does not promote the binding of a second, i.e. providing that m>/=2. Hence determinations of saturation cannot distinguish interacting and possibly identical sites from independent and different ones.
摘要
  1. 结合两个配体分子的某一分子的未结合、单结合和双结合形式的浓度依赖性,通过双曲线函数表示为游离配体浓度对数的函数。还给出了单个位点和整个分子的饱和表达式。这种表达形式可以得出以下几点。2. 根据单结合形式浓度的钟形曲线拐点的高度来分析其尖锐程度;这些拐点高度可以上升到曲线的1/√2。3. 如果一个基团与另一个基团对配体具有相当的亲和力,并且如果其中一个基团上的配体结合会降低另一个基团的亲和力,那么单个基团可以呈现双S形饱和曲线。如果配体的第一个和第二个分子的分子pK值pK(1)和pK(2)称为pK*±logm,使得K*(2)=K(1)K(2)且m(2)=K(1)/K(2),那么双S形曲线可以由两个独立的单位点饱和曲线之和表示,一般高度不等,pK值为pK*±log(1/2)[m + √(m(2)-4)]。如果基团之间的相互作用(即m)很大,或者如果基团对配体具有非常相似的亲和力,那么这种表示的误差就很小。4. 两个单位点饱和曲线之和,同样pK值为pK*±log(1/2)[m + √(m(2)-4)]但高度相等,给出了总饱和度的精确值,前提是一个分子的结合不会促进第二个分子的结合,即前提是m≥2。因此,饱和度的测定无法区分相互作用且可能相同的位点与独立且不同的位点。

相似文献

6
Negatively co-operative ligand binding.负协同配体结合
Biochem J. 1973 Aug;133(4):837-42. doi: 10.1042/bj1330837.
7
A novel view of pH titration in biomolecules.生物分子中pH滴定的新观点。
Biochemistry. 2001 Mar 27;40(12):3413-9. doi: 10.1021/bi002740q.
9
Factorization of the Michaelis functions.米氏函数的因式分解。
Biochem J. 1975 Nov;151(2):271-4. doi: 10.1042/bj1510271.

本文引用的文献

2
Some aspects of the kinetics of enzymic reactions.酶促反应动力学的某些方面。
Biochim Biophys Acta. 1953 Jan;10(1):27-34. doi: 10.1016/0006-3002(53)90206-6.
3
Negatively co-operative ligand binding.负协同配体结合
Biochem J. 1973 Aug;133(4):837-42. doi: 10.1042/bj1330837.
4
Shapes of curves of pH-dependence of reactions.反应pH依赖性曲线的形状。
Biochem J. 1973 Jan;131(1):149-54. doi: 10.1042/bj1310149.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验