Suppr超能文献

一种用于特征提取机制的神经网络模型。一种具有反馈抑制的自组织网络。

A neural network model for the mechanism of feature-extraction. A self-organizing network with feedback inhibition.

作者信息

Miyake S, Fukushima K

出版信息

Biol Cybern. 1984;50(5):377-84. doi: 10.1007/BF00336963.

Abstract

We propose a new multilayered neural network model which has the ability of rapid self-organization. This model is a modified version of the cognitron (Fukushima, 1975). It has modifiable inhibitory feedback connections, as well as conventional modifiable excitatory feedforward connections, between the cells of adjoining layers. If a feature-extracting cell in the network is excited by a stimulus which is already familiar to the network, the cell immediately feeds back inhibitory signals to its presynaptic cells in the preceding layer, which suppresses their response. On the other hand, the feature-extracting cell does not respond to an unfamiliar feature, and the responses from its presynaptic cells are therefore not suppressed because they do not receive any feedback inhibition. Modifiable synapses in the new network are reinforced in a way similar to those in the cognitron, and synaptic connections from cells yielding a large sustained output are reinforced. Since familiar stimulus features do not elicit a sustained response from the cells of the network, only circuits which detect novel stimulus features develop. The network therefore quickly acquires favorable pattern-selectivity by the mere repetitive presentation of a set of learning patterns.

摘要

我们提出了一种具有快速自组织能力的新型多层神经网络模型。该模型是认知机(Fukushima,1975)的改进版本。在相邻层的细胞之间,它不仅具有传统的可修改兴奋性前馈连接,还具有可修改的抑制性反馈连接。如果网络中的一个特征提取细胞被网络已经熟悉的刺激所激发,该细胞会立即向前一层的突触前细胞反馈抑制信号,从而抑制它们的反应。另一方面,特征提取细胞对不熟悉的特征没有反应,因此其突触前细胞的反应不会被抑制,因为它们没有接收到任何反馈抑制。新网络中的可修改突触以与认知机中类似的方式增强,来自产生大量持续输出的细胞的突触连接会得到增强。由于熟悉的刺激特征不会引发网络细胞的持续反应,因此只有检测新刺激特征的电路会发展起来。因此,通过仅仅重复呈现一组学习模式,该网络就能快速获得良好的模式选择性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验