Suppr超能文献

新认知机中的模式识别通过神经元适应性得到改善。

Pattern recognition in the neocognitron is improved by neuronal adaptation.

作者信息

van Ooyen A, Nienhuis B

机构信息

Netherlands Institute for Brain Research, Amsterdam.

出版信息

Biol Cybern. 1993;70(1):47-53. doi: 10.1007/BF00202565.

Abstract

We demonstrate that equipping the neurons of Fukushima's neocognitron with the phenomenon that a neuron decreases its activity when repeatedly stimulated (adaptation) markedly improves the pattern discriminatory power of the network. By means of adaptation, circuits for extracting discriminating features develop preferentially. In the original neocognitron, in contrast, features shared by different patterns are preferentially learned, as connections required for extracting them are more frequently reinforced.

摘要

我们证明,为福岛新认知机的神经元配备一种现象,即神经元在反复受到刺激时会降低其活动(适应性),可显著提高网络的模式辨别能力。通过适应性,用于提取辨别特征的电路会优先发展。相比之下,在原始的新认知机中,不同模式共享的特征会被优先学习,因为提取这些特征所需的连接会更频繁地得到强化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验