Gibbons R D, Dorus E, Ostrow D G, Pandey G N, Davis J M, Levy D L
Biol Psychiatry. 1984 Jul;19(7):935-61.
This paper describes the application of Gaussian mixture distributions to biological marker research in psychiatry. Mixtures of univariate and multivariate normal distributions can be used to determine if diagnostically similar psychiatric patients belong to biologically distinct subpopulations. The resulting biological subtypes may be important in understanding the etiology of psychiatric disorders. The general model and estimation procedure are described (EM algorithm; Dempster, Laird and Rubin 1977). The method is illustrated using two examples of biological data: (1) red cell membranes and monoamine oxidase activity data in normal individuals having no family history of psychiatric illness, the first-degree relatives of bipolar depressed patients and a heterogeneous patient population; and (2) smooth pursuit eye movements that classify relatives of schizophrenics, nonschizophrenics and normal controls into biologically distinct populations.
本文描述了高斯混合分布在精神病学生物标志物研究中的应用。单变量和多变量正态分布的混合可用于确定诊断上相似的精神病患者是否属于生物学上不同的亚群。由此产生的生物学亚型可能对理解精神疾病的病因很重要。文中描述了一般模型和估计程序(期望最大化算法;邓普斯特、莱尔德和鲁宾,1977年)。通过两个生物学数据实例对该方法进行了说明:(1)无精神疾病家族史的正常个体、双相抑郁症患者的一级亲属以及异质性患者群体的红细胞膜和单胺氧化酶活性数据;(2)平稳跟踪眼球运动,可将精神分裂症患者的亲属、非精神分裂症患者和正常对照分类为生物学上不同的群体。