Suppr超能文献

通过分区对局部脑血流量(RCBF)进行临床分类。

Clinical classification of regional cerebral blood flow (RCBF) by partitioning.

作者信息

Zemcov A, Barclay L L, Blass J P

出版信息

Comput Biomed Res. 1984 Dec;17(6):535-41. doi: 10.1016/0010-4809(84)90018-1.

Abstract

An algorithm is proposed to classify the regional cerebral blood flow (RCBF) of two groups of subjects. A 32-tuple training vector is defined corresponding to 32 detectors used to measure 133Xe washout following inhalation. For any index of 133Xe washout, each detector is associated with two cumulative distributions (cds) each corresponding to a population. The 32 index values at which the differences between cds are maximum are defined as partition values. All index values are then compared to their partitions and are designated binary values of 1 or 0 for being above or below the partitions. A representative sum of the binary numbers (0 to 16) indicates the number of detectors in each hemisphere which exceed their respective threshold. In the example, a normal group of subjects (n = 40) is compared to an abnormal group (n = 82). The abnormal group was identified independently of RCBF by clinical testing as having Alzheimer's disease, a subcategory of dementing diseases. The classification algorithm defined a training vector to which the two populations were compared. The normal subjects had higher representative scores than the abnormals with a tight clustering of these scores. Although some abnormals scored well, the great majority had representative scores well below 12 for each cerebral hemisphere. The training vector can be used to classify new studies or can be updated by new studies until no significant changes result. At this point, the new tracing vector is used as a reference set of partition values.

摘要

提出了一种算法来对两组受试者的局部脑血流量(RCBF)进行分类。定义了一个32元组训练向量,它对应于用于测量吸入后133Xe洗脱的32个探测器。对于133Xe洗脱的任何指标,每个探测器都与两个累积分布(CDs)相关联,每个累积分布对应一个总体。将CDs之间差异最大的32个指标值定义为划分值。然后将所有指标值与其划分值进行比较,并根据其高于或低于划分值指定为1或0的二进制值。二进制数(0到16)的代表性总和表示每个半球中超过各自阈值的探测器数量。在该示例中,将一组正常受试者(n = 40)与一组异常受试者(n = 82)进行比较。通过临床测试独立于RCBF将异常组鉴定为患有阿尔茨海默病,这是痴呆疾病的一个子类别。分类算法定义了一个训练向量,并将这两个人群与之进行比较。正常受试者的代表性分数高于异常受试者,且这些分数紧密聚集。尽管一些异常受试者得分较高,但绝大多数受试者每个脑半球的代表性分数远低于12。该训练向量可用于对新的研究进行分类,或者可通过新的研究进行更新,直到没有显著变化为止。此时,新的追踪向量用作划分值的参考集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验