Suppr超能文献

几种细菌中固氮酶组成蛋白的互补功能。

Complementary functioning of the component proteins of nitrogenase from several bacteria.

作者信息

Emerich D W, Burris R H

出版信息

J Bacteriol. 1978 Jun;134(3):936-43. doi: 10.1128/jb.134.3.936-943.1978.

Abstract

The nitrogenase proteins from eight organisms have been highly purified, and a survey of their cross-reactions shows that the nitrogenase proteins from a wide variety of organisms can interact with one another. An active cross-reaction is the complementary functioning of the MoFe protein and the Fe protein from different organisms. Of 64 possible combinations of component proteins, 8 yielded homologous nitrogenases (components from the same organism); 45 of the 56 possible heterologous crosses generated active hybrid nitrogenases; 4 heterologous crosses yielded no measurable nitrogenase activity but did form inactive tight-binding complexes; 6 crosses did not give measurable activity; and 1 cross was not made. All these crosses were assayed for acetylene reduction, and some also were assayed for ammonia formation, hydrogen evolution, and ATP hydrolysis activity. The activity generated by combining two complementary heterologous nitrogenase components depended on pH, component ratio, and protein concentration, the same factors that determine the activity of homologous nitrogenases. However, several crosses showed an unusual dependency on component ratio and protein concentration, and some cross-reactions showed interesting ATP hydrolysis activity.

摘要

来自8种生物体的固氮酶蛋白已被高度纯化,对它们交叉反应的研究表明,来自多种生物体的固氮酶蛋白能够相互作用。一种活跃的交叉反应是来自不同生物体的钼铁蛋白和铁蛋白的互补功能。在64种可能的组分蛋白组合中,8种产生了同源固氮酶(来自同一生物体的组分);56种可能的异源杂交中有45种产生了有活性的杂合固氮酶;4种异源杂交没有产生可测量的固氮酶活性,但确实形成了无活性的紧密结合复合物;6种杂交没有产生可测量的活性;还有1种杂交未进行。所有这些杂交都检测了乙炔还原活性,有些还检测了氨生成、氢气释放和ATP水解活性。由两种互补的异源固氮酶组分组合产生的活性取决于pH、组分比例和蛋白质浓度,这些因素同样决定了同源固氮酶的活性。然而,一些杂交显示出对组分比例和蛋白质浓度的异常依赖性,并且一些交叉反应显示出有趣的ATP水解活性。

相似文献

1
Complementary functioning of the component proteins of nitrogenase from several bacteria.
J Bacteriol. 1978 Jun;134(3):936-43. doi: 10.1128/jb.134.3.936-943.1978.
3
Nitrogenase in the archaebacterium Methanosarcina barkeri 227.
J Bacteriol. 1990 Dec;172(12):6789-96. doi: 10.1128/jb.172.12.6789-6796.1990.
5
Two forms of nitrogenase from the photosynthetic bacterium Rhodospirillum rubrum.
J Bacteriol. 1979 Feb;137(2):779-89. doi: 10.1128/jb.137.2.779-789.1979.
6
Cyanamide: a new substrate for nitrogenase.
Biochim Biophys Acta. 1988 Feb 10;952(3):290-6. doi: 10.1016/0167-4838(88)90129-x.
7
H2 metabolism in photosynthetic bacteria and relationship to N2 fixation.
Ann Microbiol (Paris). 1983 Jul-Aug;134B(1):115-35. doi: 10.1016/s0769-2609(83)80100-8.
8
Evidence for a two-electron transfer using the all-ferrous Fe protein during nitrogenase catalysis.
J Biol Chem. 2000 Dec 15;275(50):39307-12. doi: 10.1074/jbc.M007069200.
10
Complementary functioning of nitrogenase components from a blue-green alga and a photosynthetic bacterium.
J Bacteriol. 1971 Aug;107(2):574-5. doi: 10.1128/jb.107.2.574-575.1971.

引用本文的文献

1
Biosynthesis of cofactor-activatable iron-only nitrogenase in Saccharomyces cerevisiae.
Microb Biotechnol. 2021 May;14(3):1073-1083. doi: 10.1111/1751-7915.13758. Epub 2021 Jan 28.
3
Chimeric Interaction of Nitrogenase-Like Reductases with the MoFe Protein of Nitrogenase.
Chembiochem. 2020 Jun 15;21(12):1733-1741. doi: 10.1002/cbic.201900759. Epub 2020 Feb 27.
4
Purification and Activity of Mitochondria Targeted Nitrogenase Cofactor Maturase NifB.
Front Plant Sci. 2017 Sep 12;8:1567. doi: 10.3389/fpls.2017.01567. eCollection 2017.
5
Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein.
Acta Crystallogr D Biol Crystallogr. 2015 Feb;71(Pt 2):274-82. doi: 10.1107/S1399004714025243. Epub 2015 Jan 23.
6
Chimeric nitrogenase-like enzymes of (bacterio)chlorophyll biosynthesis.
J Biol Chem. 2009 Jun 5;284(23):15530-40. doi: 10.1074/jbc.M901331200. Epub 2009 Mar 30.
7
Nucleotide sequence of a cyanobacterial nifH gene coding for nitrogenase reductase.
Proc Natl Acad Sci U S A. 1980 Nov;77(11):6476-80. doi: 10.1073/pnas.77.11.6476.
8
Interactions between nitrogen fixation and osmoregulation in the methanogenic archaeon methanosarcina barkeri 227.
Appl Environ Microbiol. 1999 Mar;65(3):1222-7. doi: 10.1128/AEM.65.3.1222-1227.1999.

本文引用的文献

1
The estimation of creatine and of diacetyl.
Biochem J. 1943;37(5):526-9. doi: 10.1042/bj0370526.
2
Amperometric measurement of hydrogen evolution in chlamydomonas.
Plant Physiol. 1971 Jul;48(1):108-10. doi: 10.1104/pp.48.1.108.
3
Purification and Some Properties of the Nitrogenase From Soybean (Glycine max Merr.) Nodules.
Plant Physiol. 1968 Dec;43(12):1906-12. doi: 10.1104/pp.43.12.1906.
4
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
5
A micro biuret method for protein determination; determination of total protein in cerebrospinal fluid.
Scand J Clin Lab Invest. 1953;5(3):218-22. doi: 10.3109/00365515309094189.
6
Complementary functioning of two components from nitrogen-fixing bacteria.
J Bacteriol. 1969 Apr;98(1):325-6. doi: 10.1128/jb.98.1.325-326.1969.
9
Reduction of N2 by complementary functioning of two components from nitrogen-fixing bacteria.
Proc Natl Acad Sci U S A. 1968 Oct;61(2):537-41. doi: 10.1073/pnas.61.2.537.
10
Compatibility of the components of nitrogenase from soybean bacteroids and free-living nitrogen-fixing bacteria.
Biochim Biophys Acta. 1971 Nov 2;253(1):295-7. doi: 10.1016/0005-2728(71)90257-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验