Citron M C, Emerson R C
Brain Res. 1983 Nov 21;279(1-2):271-7. doi: 10.1016/0006-8993(83)90191-9.
We studied spatiotemporal interactions in cat cortical receptive fields by presenting a stimulus composed of 16 narrow bars whose luminances were randomly modulated. Conventional stimuli were also presented to classify receptive field properties. A white noise estimate of the cell's response to a stepwise moving bar stimulus was calculated from responses to the spatiotemporal random stimulus. The white noise estimate captured the most important feature of the receptive field demonstrated by conventional stimuli, i.e. directional selectivity. In addition, the white noise analysis; (1) made visible inhibitory response phases that are usually below threshold; (2) subdivided the response into its linear and non-linear estimates; (3) further subdivided the non-linear estimate into spatial and temporal interactions; and (4) allowed estimation of responses to stimuli that were never explicitly presented.