Suppr超能文献

Hypersensitivity to cell killing and mutation induction by chemical carcinogens in an excision repair-deficient mutant of CHO cells.

作者信息

Thompson L H, Salazar E P, Brookman K W, Hoy C A

出版信息

Mutat Res. 1983 Dec;112(6):329-44. doi: 10.1016/0167-8817(83)90027-5.

Abstract

A strain of Chinese hamster ovary cells that is deficient in nucleotide excision repair, strain UV5, was compared with the normal parental CHO cells in terms of cytotoxicity and mutagenesis after exposure to several chemical carcinogens that are known to produce bulky, covalent adducts in DNA. Induced mutations were measured at the hprt locus using thioguanine resistance and at the aprt locus using azaadenine resistance. The compounds tested that required metabolic activation (using rat or hamster microsomal fractions) were 7,12-dimethylbenz(a)anthracene, 3-methylcholanthrene, benzo(a)pyrene, aflatoxin B1, 2-acetylaminofluorene, and 2-naphthylamine. The direct-acting compounds (+/-)-r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene, N-acetoxy-2-acetylaminofluorene, and N-OH-2-naphthylamine were also studied. For all compounds except 2-naphthylamine and its active metabolite, the repair-deficient cells were significantly more sensitive to killing than the normal CHO cells. Mutation induction at both loci was also more efficient in UV5 cells in each instance where enhanced cytotoxicity was observed. By using tritium-labeled N-acetoxy-2-acetylaminofluorene, normal and mutant cells were shown to bind mutagen to their nuclear DNA with similar efficiency, and a greater amount of adduct removal occurred in the normal cells. From this study it is concluded that the use of excision repair-deficient CHO cells provides enhanced sensitivity for detecting mutagenesis and that a positive differential cytotoxicity response gives an indication of repairable, potentially lethal genetic damage.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验