Suppr超能文献

Hypersensitivity to cell killing and mutation induction by chemical carcinogens in an excision repair-deficient mutant of CHO cells.

作者信息

Thompson L H, Salazar E P, Brookman K W, Hoy C A

出版信息

Mutat Res. 1983 Dec;112(6):329-44. doi: 10.1016/0167-8817(83)90027-5.

Abstract

A strain of Chinese hamster ovary cells that is deficient in nucleotide excision repair, strain UV5, was compared with the normal parental CHO cells in terms of cytotoxicity and mutagenesis after exposure to several chemical carcinogens that are known to produce bulky, covalent adducts in DNA. Induced mutations were measured at the hprt locus using thioguanine resistance and at the aprt locus using azaadenine resistance. The compounds tested that required metabolic activation (using rat or hamster microsomal fractions) were 7,12-dimethylbenz(a)anthracene, 3-methylcholanthrene, benzo(a)pyrene, aflatoxin B1, 2-acetylaminofluorene, and 2-naphthylamine. The direct-acting compounds (+/-)-r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene, N-acetoxy-2-acetylaminofluorene, and N-OH-2-naphthylamine were also studied. For all compounds except 2-naphthylamine and its active metabolite, the repair-deficient cells were significantly more sensitive to killing than the normal CHO cells. Mutation induction at both loci was also more efficient in UV5 cells in each instance where enhanced cytotoxicity was observed. By using tritium-labeled N-acetoxy-2-acetylaminofluorene, normal and mutant cells were shown to bind mutagen to their nuclear DNA with similar efficiency, and a greater amount of adduct removal occurred in the normal cells. From this study it is concluded that the use of excision repair-deficient CHO cells provides enhanced sensitivity for detecting mutagenesis and that a positive differential cytotoxicity response gives an indication of repairable, potentially lethal genetic damage.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验