Cannon S C, Robinson D A, Shamma S
Biol Cybern. 1983;49(2):127-36. doi: 10.1007/BF00320393.
Single-unit recordings, stimulation studies, and eye movement measurements all indicate that the firing patterns of many oculomotor neurons in the brain stem encode eye-velocity commands in premotor circuits while the firing patterns of extraocular motoneurons contain both eye-velocity and eye-position components. It is necessary to propose that the eye-position component is generated from the eye-velocity signal by a leaky hold element or temporal integrator. Prior models of this integrator suffer from two important problems. Since cells appear to have a steady, background signal when eye position and velocity are zero, how does the integrator avoid integrating this background rate? Most models employ some form of lumped, positive feedback the gain of which must be kept within totally unreasonable limits for proper operation. We propose a lateral inhibitory network of homogeneous neurons as a model for the neural integrator that solves both problems. Parameter sensitivity studies and lesion simulations are presented to demonstrate robustness of the model with respect to both the choice of parameter values and the consequences of pathological changes in a portion of the neural integrator pool.
单细胞记录、刺激研究以及眼动测量均表明,脑干中许多动眼神经元的放电模式在运动前回路中编码眼速度指令,而眼外运动神经元的放电模式则同时包含眼速度和眼位置成分。有必要提出,眼位置成分是由一个泄漏保持元件或时间积分器从眼速度信号中产生的。此前该积分器的模型存在两个重要问题。由于当眼位置和速度为零时细胞似乎有一个稳定的背景信号,积分器如何避免对这个背景速率进行积分?大多数模型采用某种形式的集中式正反馈,为了正常运行,其增益必须保持在完全不合理的范围内。我们提出一个由同类神经元组成的侧向抑制网络作为神经积分器的模型,该模型解决了这两个问题。本文还进行了参数敏感性研究和损伤模拟,以证明该模型在参数值选择以及神经积分器池的一部分发生病理变化的情况下的稳健性。