Wolpaw J R, Braitman D J, Seegal R F
J Neurophysiol. 1983 Dec;50(6):1296-311. doi: 10.1152/jn.1983.50.6.1296.
Description of the neuronal and synaptic bases of memory in the vertebrate central nervous system (CNS) requires a CNS stimulus-response pathway that is defined and accessible, has the capacity for adaptive change, and clearly contains the responsible substrates. This study was an attempt to determine whether the spinal stretch reflex (SSR), the initial, purely spinal, portion of the muscle stretch response, which satisfies the first requirement, also satisfies the second, capacity for adaptive change. Monkeys prepared with chronic fine-wire biceps electromyographic (EMG) electrodes were trained to maintain elbow position and a given level of biceps background EMG activity against constant extension torque. At random times, a brief additional extension torque pulse extended the elbow and elicited the biceps SSR. Under the control mode, reward always followed. Under the SSR increases or SSR decreases mode, reward followed only if the absolute value of biceps EMG from 14 to 24 ms after stretch onset (the SSR interval) was above or below a set value. Animals performed 3,000-6,000 trials/day over data-collection periods of up to 15 mo. Background EMG and the initial 30 ms of pulse-induced extension remained stable throughout data collection. Under the SSR increases or SSR decreases mode, SSR amplitude (EMG amplitude in the SSR interval minus background EMG amplitude) changed appropriately. Change was evident in 5-10 days and progressed over at least 4 wk. The SSR increased (SSR increases) to 140-190% control amplitude or decreased (SSR decreases) to 22-79%. SSR change did not regress over 12-day gaps in task performance. A second pair of biceps electrodes, monitored simultaneously, supplied comparable data, indicating that SSR amplitude change occurred throughout the muscle. Beyond 40 ms after pulse onset, elbow extension was inversely correlated with SSR amplitude. The delay between the SSR and its apparent effect on movement is consistent with expected motor-unit contraction time. The data demonstrate that the SSR is capable of adaptive change. At present the most likely site(s) of the mechanism of SSR amplitude change are the Ia synapse and/or the muscle spindle. Available related evidence suggests persistent segmental change may in fact come to mediate SSR amplitude change. If so, such segmental change would constitute a technically accessible fragment of a memory.
描述脊椎动物中枢神经系统(CNS)中记忆的神经元和突触基础,需要一条明确且可触及的CNS刺激-反应通路,该通路具有适应性变化的能力,并且显然包含负责的底物。本研究试图确定脊髓牵张反射(SSR),即肌肉牵张反应最初的、纯粹脊髓层面的部分,它满足第一个要求,是否也满足第二个要求,即适应性变化的能力。给用慢性细钢丝肱二头肌肌电图(EMG)电极制备好的猴子训练,使其在恒定伸展扭矩下保持肘部位置和给定水平的肱二头肌背景EMG活动。在随机时间,一个短暂的额外伸展扭矩脉冲伸展肘部并引发肱二头肌SSR。在控制模式下,总是给予奖励。在SSR增加或SSR减少模式下,只有在伸展开始后14至24毫秒(SSR间隔)内肱二头肌EMG的绝对值高于或低于设定值时才给予奖励。在长达15个月的数据收集期内,动物每天进行3000 - 6000次试验。在整个数据收集过程中,背景EMG和脉冲诱导伸展的最初30毫秒保持稳定。在SSR增加或SSR减少模式下,SSR幅度(SSR间隔内的EMG幅度减去背景EMG幅度)发生了适当变化。变化在5 - 10天内明显,并至少持续4周。SSR增加(SSR增加)到对照幅度的140 - 190%或减少(SSR减少)到22 - 79%。SSR变化在任务表现中断12天的情况下没有消退。同时监测的第二对肱二头肌电极提供了类似的数据,表明SSR幅度变化发生在整个肌肉中。在脉冲开始后超过40毫秒,肘部伸展与SSR幅度呈负相关。SSR与其对运动的明显影响之间的延迟与预期的运动单位收缩时间一致。数据表明SSR能够进行适应性变化。目前,SSR幅度变化机制最可能的位点是Ia突触和/或肌梭。现有的相关证据表明,持续的节段性变化实际上可能介导SSR幅度变化。如果是这样,这种节段性变化将构成记忆中一个技术上可触及的片段。