Suppr超能文献

[子宫内膜传统鉴别诊断的潜力与局限]

[Potentials and limits of conventional differential diagnosis of the endometrium].

作者信息

Höffken H, Hemmersbach E, Heberling D, Leppien G, Rummel H H

出版信息

Zentralbl Gynakol. 1984;106(7):421-30.

PMID:6730764
Abstract

The reproducible identification of various histological types of the endometrium is of special interest for many reasons. The controversy in endometrial classification and terminology led us to study the algorithm of conventional endometrial diagnosing. This study is to examine the significance of historical morphologic parameters for differential diagnosis by semiquantitative or binary recording and computer-assisted evaluation. The results are based on cross-tables and cluster-analysis. The statistical test showed that most of the historical parameters were neither adequate for reclassification nor exclusion of historical typing of the endometrium. An objective and reproducible classification of endometrial changes by using binary parameters can only be achieved for specific histological types of normal endometrium and several types of hyperplastic endometrium. The dedifferentiated carcinoma is a diagnosis "per exclusionem ", since nearly all of the binary parameters cannot be analysed. The individual borderline lesions cannot be differentiated from each other by descriptive parameters. They cannot even be distinguished from the highly differentiated endometrial carcinomas. This kind of differential diagnosis is obviously not based on conventional formalistic criteria but on nonquantifiable empirical data. This might be a reason for the above mentioned controversy in endometrial diagnosis and terminology.

摘要

出于多种原因,对子宫内膜各种组织学类型进行可重复识别具有特殊意义。子宫内膜分类和术语方面的争议促使我们研究传统子宫内膜诊断算法。本研究旨在通过半定量或二元记录及计算机辅助评估,检验历史形态学参数在鉴别诊断中的意义。结果基于交叉表和聚类分析。统计检验表明,大多数历史参数既不适用于重新分类,也不足以排除子宫内膜的历史分型。仅针对特定组织学类型的正常子宫内膜和几种增生性子宫内膜,才能通过使用二元参数实现对子宫内膜变化的客观且可重复的分类。去分化癌是一种“排除性”诊断,因为几乎所有二元参数都无法分析。个体的临界病变无法通过描述性参数相互区分,甚至无法与高分化子宫内膜癌区分开来。这种鉴别诊断显然不是基于传统的形式标准,而是基于不可量化的经验数据。这可能是上述子宫内膜诊断和术语争议的一个原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验