Cheetham P S
Biochem J. 1984 May 15;220(1):213-20. doi: 10.1042/bj2200213.
The single enzyme that mediates the bioconversion is demonstrated to be located in the cells' periplasmic space, a site that facilitates its use as an industrial biocatalyst, and to be a previously undescribed hexosyltransferase with four novel features. The enzyme is sucrose-specific, and has an intramolecular mechanism in which both glucose and fructose residues appear to be enzyme-bound. Thirdly, it is reaction-non-selective, forming simultaneously isomaltulose and a second hitherto uncharacterized alpha-(1----1)-linked disaccharide (trehalulose), by hydrolysis of sucrose followed by reaction of glucose with the C-6 and C-1 positions of the fructofuranose respectively. Finally, on extended incubation an unusual recycling mechanism caused the concentration of isomaltulose, the kinetically preferred product, to reach a transient maximum concentration and then fall, and the concentration of trehalulose, the thermodynamically favoured product, to rise slowly.
介导生物转化的单一酶被证明位于细胞的周质空间,这一位置便于其用作工业生物催化剂,并且它是一种具有四个新特性的前所未描述的己糖基转移酶。该酶对蔗糖具有特异性,具有一种分子内机制,其中葡萄糖和果糖残基似乎都与酶结合。第三,它对反应无选择性,通过蔗糖水解,然后葡萄糖分别与呋喃果糖的C-6和C-1位反应,同时形成异麦芽糖酮和第二种迄今未表征的α-(1→1)-连接的二糖(海藻酮)。最后,长时间孵育时,一种不寻常的循环机制导致动力学上更有利的产物异麦芽糖酮的浓度达到一个短暂的最大浓度然后下降,而热力学上更有利的产物海藻酮的浓度则缓慢上升。