Suppr超能文献

确定一个经验校正因子以处理神经元计数中核仁分裂的问题。

The determination of an empirical correction factor to deal with the problem of nucleolar splitting in neuronal counts.

作者信息

Coggeshall R E, Chung K

出版信息

J Neurosci Methods. 1984 Feb;10(2):149-55. doi: 10.1016/0165-0270(84)90069-4.

Abstract

Nucleolar counts are the method of choice for determining neuronal numbers. The main problem is the determination of an accurate correction factor for split nucleoli. The difficulties are that small nucleolar fragments are often unrecognizable and that nucleoli may be pushed or rolled rather than cleanly cut by the knife. A widely used method uses an estimate to account for the difficulties, and almost all methods depend on measurements of such things as section thickness and nucleolar diameters. We differ from previous procedures by identifying neurons first and then determining whether the nucleolus in each identified neuron is split or whole. If N is the true number of neurons, n the number of nucleoli counted to estimate N, T the number of nucleoli counted for the correction factor and S the number of nucleoli in T that are split, then N = [(T-S/2)/T] X n. The advantages are that the observations are easily done and that there are no estimates, only a determination of the numbers of whole and split nucleoli for a sample population of neurons.

摘要

核仁计数是确定神经元数量的首选方法。主要问题在于确定分裂核仁的准确校正因子。困难在于小的核仁碎片往往难以识别,并且核仁可能被推移或滚动,而不是被刀干净地切断。一种广泛使用的方法通过估计来解决这些困难,几乎所有方法都依赖于诸如切片厚度和核仁直径等测量。我们与之前的方法不同之处在于,先识别神经元,然后确定每个已识别神经元中的核仁是分裂的还是完整的。如果N是神经元的真实数量,n是为估计N而计数的核仁数量,T是为校正因子而计数的核仁数量,S是T中分裂的核仁数量,那么N = [(T - S/2)/T]×n。优点是观察容易进行,并且无需估计,只需确定神经元样本群体中完整和分裂核仁的数量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验