Suppr超能文献

氯霉素对枯草芽孢杆菌同步化细胞中隔膜形成和细胞分裂的细胞周期特异性抑制作用。

Cell-cycle-specific inhibition by chloramphenicol of septum fromation and cell division in synchronized cells of Bacillus subtilis.

作者信息

Miyakawa Y, Komano T, Maruyama Y

出版信息

J Bacteriol. 1980 Feb;141(2):502-7. doi: 10.1128/jb.141.2.502-507.1980.

Abstract

The relationship between protein synthesis and processes of cell division was studied by using synchronized cells of Bacillus subtilis 168. The addition of chloramphenicol at the beginning of synchronous growth prevented septum formation and cell division, suggesting the requirement of protein synthesis for the processes of cell division. Experiments in which the drug was added to the cells at different cell ages showed that the protein synthesis required for the initiation of septum formation was completed at about 15 min and that the protein synthesis required for cell division was completed at about 45 min. By interpreting the result from the concept of the transition point for protein synthesis, it was suggested that the processes of cell division in B. subtilis require at least two kinds of protein molecules which are synthesized at distinct stages in the cell cycle. This was supported by the result of an experiment in which starvation and the readdition of a required amino acid to exponentially growing cells induced two steps of synchronous cell division. Further, the two transition points are in agreement with the estimations obtained by residual division after the inhibition of protein synthesis in asynchronous cells. The relationship of the timing between the completion of chromosome replication and the two transition points was also studied.

摘要

利用枯草芽孢杆菌168的同步化细胞研究了蛋白质合成与细胞分裂过程之间的关系。在同步生长开始时添加氯霉素可阻止隔膜形成和细胞分裂,这表明细胞分裂过程需要蛋白质合成。在不同细胞年龄向细胞中添加该药物的实验表明,隔膜形成起始所需的蛋白质合成在约15分钟时完成,而细胞分裂所需的蛋白质合成在约45分钟时完成。通过从蛋白质合成转变点的概念来解释结果,表明枯草芽孢杆菌的细胞分裂过程至少需要两种在细胞周期不同阶段合成的蛋白质分子。这一观点得到了一项实验结果的支持,在该实验中,饥饿处理以及向指数生长的细胞中重新添加所需氨基酸诱导了两步同步细胞分裂。此外,这两个转变点与异步细胞中蛋白质合成受到抑制后通过残留分裂获得的估计值一致。还研究了染色体复制完成与这两个转变点之间的时间关系。

相似文献

2
Coupling between chromosome completion and cell division in Escherichia coli.
J Bacteriol. 1973 Sep;115(3):786-95. doi: 10.1128/jb.115.3.786-795.1973.
3
Genetic regulation of cell division initiation in Bacillus subtilis.
J Bacteriol. 1972 Nov;112(2):994-1003. doi: 10.1128/jb.112.2.994-1003.1972.
4
Control of the synthesis of macromolecules during amino acid and thymine starvation in Bacillus subtilis.
J Bacteriol. 1968 May;95(5):1813-27. doi: 10.1128/jb.95.5.1813-1827.1968.
5
Control of membrane protein synthesis in Bacillus subtilis.
Biochim Biophys Acta. 1975 Nov 3;406(4):564-74. doi: 10.1016/0005-2736(75)90033-4.
8
Bactericidal action of nalidixic acid on Bacillus subtilis.
J Bacteriol. 1966 Nov;92(5):1510-4. doi: 10.1128/jb.92.5.1510-1514.1966.
9
Initiation of deoxyribonucleic acid synthesis after thymine starvation of Bacillus subtilis.
J Bacteriol. 1968 Feb;95(2):304-9. doi: 10.1128/jb.95.2.304-309.1968.
10
The cell cycle of Bacillus subtilis as studied by electron microscopy.
Arch Microbiol. 1979 Nov;123(2):173-81. doi: 10.1007/BF00446817.

引用本文的文献

1
Mitochondrial Protein Turnover Is Critical for Granulosa Cell Proliferation and Differentiation in Antral Follicles.
J Endocr Soc. 2018 Dec 10;3(2):324-339. doi: 10.1210/js.2018-00329. eCollection 2019 Feb 1.
2
Investigations to the Antibacterial Mechanism of Action of Kendomycin.
PLoS One. 2016 Jan 21;11(1):e0146165. doi: 10.1371/journal.pone.0146165. eCollection 2016.
3
Characterization of cell cycle events during the onset of sporulation in Bacillus subtilis.
J Bacteriol. 1995 Jul;177(14):3923-31. doi: 10.1128/jb.177.14.3923-3931.1995.
4
Timed action of the gene products required for septum formation in the cell cycle of Bacillus subtilis.
J Bacteriol. 1982 Feb;149(2):673-80. doi: 10.1128/jb.149.2.673-680.1982.
5
Rapid transient growth at low pH in the cyanobacterium Synechococcus sp.
J Bacteriol. 1982 Jan;149(1):237-46. doi: 10.1128/jb.149.1.237-246.1982.
6
Division blocks in temperature-sensitive mutants of Streptococcus faecium (S. faecalis ATCC 9790).
J Bacteriol. 1983 Dec;156(3):1046-51. doi: 10.1128/jb.156.3.1046-1051.1983.
7
Bacterial growth and division: genes, structures, forces, and clocks.
Microbiol Rev. 1982 Sep;46(3):341-75. doi: 10.1128/mr.46.3.341-375.1982.

本文引用的文献

1
Growth, cell and nuclear divisions in some bacteria.
J Gen Microbiol. 1962 Nov;29:421-34. doi: 10.1099/00221287-29-3-421.
3
Genetic control of the cell-division cycle in yeast. I. Detection of mutants.
Proc Natl Acad Sci U S A. 1970 Jun;66(2):352-9. doi: 10.1073/pnas.66.2.352.
4
Independence of cell division and DNA replication in Bacillus subtilis.
Nat New Biol. 1971 Jun 30;231(26):274-6. doi: 10.1038/newbio231274a0.
7
Genetic regulation of cell division initiation in Bacillus subtilis.
J Bacteriol. 1972 Nov;112(2):994-1003. doi: 10.1128/jb.112.2.994-1003.1972.
8
Protein synthesis and the release of the replicated chromosome from the cell membrane.
Nature. 1974 Sep 20;251(5472):252-4. doi: 10.1038/251252a0.
9
Problems of cell wall and membrane growth, enlargement, and division.
Ann N Y Acad Sci. 1974 May 10;235(0):161-97. doi: 10.1111/j.1749-6632.1974.tb43265.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验