Suppr超能文献

甲酸甲烷杆菌中甲酸的代谢

Metabolism of formate in Methanobacterium formicicum.

作者信息

Schauer N L, Ferry J G

出版信息

J Bacteriol. 1980 Jun;142(3):800-7. doi: 10.1128/jb.142.3.800-807.1980.

Abstract

Methanobacterium formicicum strain JF-1 was cultured with formate as the sole energy source in a pH-stat fermentor. Growth was exponential, and both methane production and formate consumption were linear functions of the growth rate. Hydrogen was produced in only trace amounts, and the dissolved H(2) concentration of the culture medium was below 1 muM. The effect of temperature or pH on the rate of methane formation was studied with a single fermentor culture in mid-log phase that was grown with formate under standard conditions at 37 degrees C and pH 7.6. Methane formation from formate occurred over the pH range from 6.5 to 8.6, with a maximum at pH 8.0. The maximum temperature of methanogenesis was 56 degrees C. H(2) production increased at higher temperatures. Hydrogen and formate were consumed throughout growth when both were present in saturating concentrations. The molar growth yields were 1.2 +/- 0.06 g (dry weight) per mol of formate and 4.8 +/- 0.24 g (dry weight) per mol of methane. Characteristics were compared for cultures grown with either formate or H(2)-CO(2) as the sole energy source at 37 degrees C and pH 7.6; the molar growth yield for methane of formate cultures was 4.8 g (dry weight) per mol, and that of H(2)-CO(2) cultures was 3.5 g (dry weight) per mol. Both formate and H(2)-CO(2) cultures had low efficiencies of electron transport phosphorylation; formate-cultured cells had greater specific activities of coenzyme F(420) than did H(2)-CO(2)-grown cultures. Hydrogenase, formate dehydrogenase, chromophoric factor F(342), and low levels of formyltetrahydrofolate synthetase were present in cells cultured with either substrate. Methyl viologen-dependent formate dehydrogenase was found in the soluble fraction from broken cells.

摘要

甲酸甲烷杆菌菌株JF-1在pH自动控制发酵罐中以甲酸盐作为唯一能源进行培养。生长呈指数增长,甲烷生成和甲酸盐消耗均为生长速率的线性函数。仅产生微量氢气,培养基中溶解的H₂浓度低于1μM。在37℃和pH 7.6的标准条件下,使用处于对数中期的单个发酵罐培养物,研究了温度或pH对甲烷生成速率的影响。甲酸盐生成甲烷的反应在pH 6.5至8.6范围内发生,在pH 8.0时达到最大值。甲烷生成的最高温度为56℃。在较高温度下H₂产量增加。当氢气和甲酸盐都以饱和浓度存在时,在整个生长过程中都会被消耗。每摩尔甲酸盐的摩尔生长产量为1.2±0.06 g(干重),每摩尔甲烷为4.8±0.24 g(干重)。比较了在37℃和pH 7.6条件下以甲酸盐或H₂-CO₂作为唯一能源培养的培养物的特性;甲酸盐培养物中甲烷的摩尔生长产量为每摩尔4.8 g(干重),H₂-CO₂培养物为每摩尔3.5 g(干重)。甲酸盐和H₂-CO₂培养物的电子传递磷酸化效率都很低;甲酸盐培养的细胞比H₂-CO₂培养的细胞具有更高的辅酶F₄₂₀比活性。在用任何一种底物培养的细胞中都存在氢化酶、甲酸盐脱氢酶、发色因子F₃₄₂和低水平的甲酰四氢叶酸合成酶。在破碎细胞的可溶部分中发现了甲基紫精依赖性甲酸盐脱氢酶。

相似文献

1
Metabolism of formate in Methanobacterium formicicum.
J Bacteriol. 1980 Jun;142(3):800-7. doi: 10.1128/jb.142.3.800-807.1980.
2
Relationship of formate to growth and methanogenesis by Methanococcus thermolithotrophicus.
Appl Environ Microbiol. 1986 Nov;52(5):1080-5. doi: 10.1128/aem.52.5.1080-1085.1986.
3
Regulation of formate dehydrogenase activity in Methanococcus thermolithotrophicus.
J Bacteriol. 1990 Mar;172(3):1464-9. doi: 10.1128/jb.172.3.1464-1469.1990.
4
Kinetics of Formate Metabolism in Methanobacterium formicicum and Methanospirillum hungatei.
Appl Environ Microbiol. 1982 Sep;44(3):549-54. doi: 10.1128/aem.44.3.549-554.1982.
5
Properties of formate dehydrogenase in Methanobacterium formicicum.
J Bacteriol. 1982 Apr;150(1):1-7. doi: 10.1128/jb.150.1.1-7.1982.
7
Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium.
Arch Microbiol. 1980 Jan;124(1):1-11. doi: 10.1007/BF00407022.
8
Source of carbon and hydrogen in methane produced from formate by Methanococcus thermolithotrophicus.
J Bacteriol. 1986 Dec;168(3):1402-7. doi: 10.1128/jb.168.3.1402-1407.1986.

引用本文的文献

1
Identifying microbial functional guilds performing cryptic organotrophic and lithotrophic redox cycles in anaerobic granular biofilms.
PLoS One. 2025 Aug 18;20(8):e0330380. doi: 10.1371/journal.pone.0330380. eCollection 2025.
4
A unified and simple medium for growing model methanogens.
Front Microbiol. 2023 Jan 10;13:1046260. doi: 10.3389/fmicb.2022.1046260. eCollection 2022.
9
Insights into Ammonia Adaptation and Methanogenic Precursor Oxidation by Genome-Centric Analysis.
Environ Sci Technol. 2020 Oct 6;54(19):12568-12582. doi: 10.1021/acs.est.0c01945. Epub 2020 Sep 14.
10
as a target rumen methanogen for the development of new methane mitigation interventions: A review.
Vet Anim Sci. 2018 Sep 13;6:86-94. doi: 10.1016/j.vas.2018.09.001. eCollection 2018 Dec.

本文引用的文献

1
Methane production in the interstitial waters of sulfate-depleted marine sediments.
Science. 1974 Sep 27;185(4157):1167-9. doi: 10.1126/science.185.4157.1167.
2
Studies on the methane fermentation. X. A new formate-decomposing bacterium, Methanococcus vannielii.
J Bacteriol. 1951 Sep;62(3):269-80. doi: 10.1128/jb.62.3.269-280.1951.
3
FORMATION OF METHANE BY BACTERIAL EXTRACTS.
J Biol Chem. 1963 Aug;238:2882-6.
4
Hydrogen-oxidizing methane bacteria. I. Cultivation and methanogenesis.
J Bacteriol. 1968 Mar;95(3):1118-23. doi: 10.1128/jb.95.3.1118-1123.1968.
5
Adenosine triphosphate pools in Methanobacterium.
J Bacteriol. 1970 Apr;102(1):43-51. doi: 10.1128/jb.102.1.43-51.1970.
7
Anaerobic degradation of benzoate to methane by a microbial consortium.
Arch Microbiol. 1976 Feb;107(1):33-40. doi: 10.1007/BF00427864.
10
Proposed structure for coenzyme F420 from Methanobacterium.
Biochemistry. 1978 Oct 31;17(22):4583-93. doi: 10.1021/bi00615a002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验