Zimmerman J L, Fouts D L, Manning J E
Genetics. 1980 Jul;95(3):673-91. doi: 10.1093/genetics/95.3.673.
The amount, by mass, of poly(A+) mRNA present in the polyribosomes of third-instar larvae of Drosophila melanogaster, and the relative contribution of the poly(A+) mRNA to the sequence complexity of total polysomal RNA, has been determined. Selective removal of poly(A+) mRNA from total polysomal RNA by use of either oligo-dT-cellulose, or poly(U)-sepharose affinity chromatography, revealed that only 0.15% of the mass of the polysomal RNA was present as poly(A+) mRNA. The present study shows that this RNA hybridized at saturation with 3.3% of the single-copy DNA in the Drosophila genome. After correction for asymmetric transcription and reactability of the DNA, 7.4% of the single-copy DNA in the Drosophila genome is represented in larval poly(A+) mRNA. This corresponds to 6.73 X 10(6) nucleotides of mRNA coding sequences, or approximately 5,384 diverse RNA sequences of average size 1,250 nucleotides. However, total polysomal RNA hybridizes at saturation to 10.9% of the single-copy DNA sequences. After correcting this value for asymmetric transcription and tracer DNA reactability, 24% of the single-copy DNA in Drosophila is represented in total polysomal RNA. This corresponds to 2.18 X 10(7) nucleotides of RNA coding sequences or 17,440 diverse RNA molecules of size 1,250 nucleotides. This value is 3.2 times greater than that boserved for poly(A+) mRNA, and indicates that congruent to 69% of the polysomal RNA sequence complexity is contributed by nonadenylated RNA. Futhermore, if the number of different structural genes represented in total polysomal RNA is congruent to 1.7 X 10(4), then the number of genes expressed in third-instar larvae exceeds the number of chromomeres in Drosophila by about a factor of three. This numbeology indicates that the number of chromomeres observed in polytene chromosomes does not reflect the number of structural gene sequences in the Drosophila genome.
已经确定了黑腹果蝇三龄幼虫多核糖体中多聚腺苷酸(poly(A+))mRNA的质量含量,以及poly(A+) mRNA对总多核糖体RNA序列复杂性的相对贡献。通过使用寡聚dT纤维素或聚尿苷酸-琼脂糖亲和层析从总多核糖体RNA中选择性去除poly(A+) mRNA,结果显示多核糖体RNA中只有0.15%的质量以poly(A+) mRNA的形式存在。本研究表明,这种RNA与果蝇基因组中3.3%的单拷贝DNA饱和杂交。在校正DNA的不对称转录和反应性后,果蝇基因组中7.4%的单拷贝DNA存在于幼虫的poly(A+) mRNA中。这相当于6.73×10⁶个mRNA编码序列的核苷酸,或大约5384个平均大小为1250个核苷酸的不同RNA序列。然而,总多核糖体RNA与10.9%的单拷贝DNA序列饱和杂交。在校正该值的不对称转录和示踪DNA反应性后,果蝇中24%的单拷贝DNA存在于总多核糖体RNA中。这相当于2.18×10⁷个RNA编码序列的核苷酸或17440个大小为1250个核苷酸的不同RNA分子。该值比poly(A+) mRNA观察到的值大3.2倍,表明约69%的多核糖体RNA序列复杂性由非腺苷化RNA贡献。此外,如果总多核糖体RNA中代表的不同结构基因数量相当于1.7×10⁴,那么三龄幼虫中表达的基因数量比果蝇中的染色粒数量大约多三倍。这个数字表明在多线染色体中观察到的染色粒数量并不能反映果蝇基因组中结构基因序列的数量。