Garbriel R M, Glavin G B
Pavlov J Biol Sci. 1978 Apr-Jun;13(2):93-112. doi: 10.1007/BF03000671.
The interpretive benefits of employing multivariate analysis methods on experimental data with more than one dependent variable are described heuristically and illustrated on a set of data from a simply designed experiment in physiological psychology. Multivariate analysis of variance (MANOVA) is performed on the 9 dependent variables contained in the sample data and on the four composites derived from a principal components analysis (PCA) of the variability of the nine. A linear discriminant analysis (LDA) is conducted following both MANOVA results, and 5 methods of determining the "important" dependent variables in the experimental-control group difference are presented and discussed in terms of the data at hand.
本文启发式地描述了对具有多个因变量的实验数据采用多变量分析方法的解释优势,并通过一组来自生理心理学简单设计实验的数据进行了说明。对样本数据中包含的9个因变量以及从这9个变量的变异性主成分分析(PCA)得出的4个合成变量进行了多变量方差分析(MANOVA)。在MANOVA的两个结果之后进行了线性判别分析(LDA),并根据手头的数据提出并讨论了确定实验组与对照组差异中“重要”因变量的5种方法。