Suppr超能文献

生物统计学系列模块10:多元方法概述

Biostatistics Series Module 10: Brief Overview of Multivariate Methods.

作者信息

Hazra Avijit, Gogtay Nithya

机构信息

Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India.

Department of Clinical Pharmacology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India.

出版信息

Indian J Dermatol. 2017 Jul-Aug;62(4):358-366. doi: 10.4103/ijd.IJD_296_17.

Abstract

Multivariate analysis refers to statistical techniques that simultaneously look at three or more variables in relation to the subjects under investigation with the aim of identifying or clarifying the relationships between them. These techniques have been broadly classified as dependence techniques, which explore the relationship between one or more dependent variables and their independent predictors, and interdependence techniques, that make no such distinction but treat all variables equally in a search for underlying relationships. Multiple linear regression models a situation where a single numerical dependent variable is to be predicted from multiple numerical independent variables. Logistic regression is used when the outcome variable is dichotomous in nature. The log-linear technique models count type of data and can be used to analyze cross-tabulations where more than two variables are included. Analysis of covariance is an extension of analysis of variance (ANOVA), in which an additional independent variable of interest, the covariate, is brought into the analysis. It tries to examine whether a difference persists after "controlling" for the effect of the covariate that can impact the numerical dependent variable of interest. Multivariate analysis of variance (MANOVA) is a multivariate extension of ANOVA used when multiple numerical dependent variables have to be incorporated in the analysis. Interdependence techniques are more commonly applied to psychometrics, social sciences and market research. Exploratory factor analysis and principal component analysis are related techniques that seek to extract from a larger number of metric variables, a smaller number of composite factors or components, which are linearly related to the original variables. Cluster analysis aims to identify, in a large number of cases, relatively homogeneous groups called clusters, without prior information about the groups. The calculation intensive nature of multivariate analysis has so far precluded most researchers from using these techniques routinely. The situation is now changing with wider availability, and increasing sophistication of statistical software and researchers should no longer shy away from exploring the applications of multivariate methods to real-life data sets.

摘要

多变量分析是指统计技术,它同时考察与所研究对象相关的三个或更多变量,目的是识别或阐明它们之间的关系。这些技术大致分为相依技术和独立技术。相依技术探索一个或多个因变量与其独立预测变量之间的关系;独立技术则不做这种区分,而是平等对待所有变量,以寻找潜在关系。多元线性回归用于根据多个数值自变量预测单个数值因变量的情况。当结果变量本质上是二分变量时,使用逻辑回归。对数线性技术用于对计数型数据建模,可用于分析包含两个以上变量的交叉表。协方差分析是方差分析(ANOVA)的扩展,其中将一个额外的感兴趣自变量(协变量)纳入分析。它试图检验在“控制”了可能影响感兴趣数值因变量的协变量的影响后,差异是否仍然存在。多变量方差分析(MANOVA)是ANOVA的多变量扩展,用于在分析中必须纳入多个数值因变量的情况。独立技术更常用于心理测量学、社会科学和市场研究。探索性因子分析和主成分分析是相关技术,旨在从大量度量变量中提取较少数量的复合因子或成分,这些因子或成分与原始变量线性相关。聚类分析旨在在大量案例中识别相对同质的组,即聚类,而无需关于这些组的先验信息。多变量分析计算量较大,到目前为止,大多数研究人员无法常规使用这些技术。随着统计软件的更广泛可用性和日益复杂,这种情况现在正在改变,研究人员不应再回避探索多变量方法在实际数据集上的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a29/5527714/8fbb500bdc84/IJD-62-358-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验