Suppr超能文献

自动化数据处理与放射分析。

Automated data processing and radioassays.

作者信息

Samols E, Barrows G H

出版信息

Semin Nucl Med. 1978 Apr;8(2):163-79. doi: 10.1016/s0001-2998(78)80039-7.

Abstract

Radioassays include (1) radioimmunoassays, (2) competitive protein-binding assays based on competition for limited antibody or specific binding protein, (3) immunoradiometric assay, based on competition for excess labeled antibody, and (4) radioreceptor assays. Most mathematical models describing the relationship between labeled ligand binding and unlabeled ligand concentration have been based on the law of mass action or the isotope dilution principle. These models provide useful data reduction programs, but are theoretically unfactory because competitive radioassay usually is not based on classical dilution principles, labeled and unlabeled ligand do not have to be identical, antibodies (or receptors) are frequently heterogenous, equilibrium usually is not reached, and there is probably steric and cooperative influence on binding. An alternative, more flexible mathematical model based on the probability or binding collisions being restricted by the surface area of reactive divalent sites on antibody and on univalent antigen has been derived. Application of these models to automated data reduction allows standard curves to be fitted by a mathematical expression, and unknown values are calculated from binding data. The vitrues and pitfalls are presented of point-to-point data reduction, linear transformations, and curvilinear fitting approaches. A third-order polynomial using the square root of concentration closely approximates the mathematical model based on probability, and in our experience this method provides the most acceptable results with all varieties of radioassays. With this curvilinear system, linear point connection should be used between the zero standard and the beginning of significant dose response, and also towards saturation. The importance is stressed of limiting the range of reported automated assay results to that portion of the standard curve that delivers optimal sensitivity. Published methods for automated data reduction of Scatchard plots for radioreceptor assay are limited by calculation of a single mean K value. The quality of the input data is generally the limiting factor in achieving good precision with automated as it is with manual data reduction. The major advantages of computerized curve fitting include: (1) handling large amounts of data rapidly and without computational error; (2) providing useful quality-control data; (3) indicating within-batch variance of the test results; (4) providing ongoing quality-control charts and between assay variance.

摘要

放射分析包括

(1)放射免疫分析;(2)基于对有限抗体或特异性结合蛋白的竞争的竞争性蛋白结合分析;(3)基于对过量标记抗体的竞争的免疫放射分析;以及(4)放射受体分析。大多数描述标记配体结合与未标记配体浓度之间关系的数学模型都基于质量作用定律或同位素稀释原理。这些模型提供了有用的数据简化程序,但在理论上并不完善,因为竞争性放射分析通常不基于经典稀释原理,标记和未标记的配体不一定相同,抗体(或受体)通常是异质的,通常未达到平衡,并且可能存在空间位阻和协同结合影响。已经推导出一种基于概率或结合碰撞受抗体上反应性二价位点和单价抗原表面积限制的更灵活的数学模型。将这些模型应用于自动数据简化,可通过数学表达式拟合标准曲线,并根据结合数据计算未知值。介绍了逐点数据简化、线性变换和曲线拟合方法的优点与缺陷。使用浓度平方根的三阶多项式非常接近基于概率的数学模型,并且根据我们的经验,该方法在所有类型的放射分析中都能提供最可接受的结果。对于这种曲线系统,在零标准品与显著剂量反应开始之间以及接近饱和时应使用线性点连接。强调了将自动分析报告结果的范围限制在标准曲线提供最佳灵敏度的部分的重要性。已发表的放射受体分析Scatchard图自动数据简化方法受单个平均K值计算的限制。与手动数据简化一样,输入数据的质量通常是自动分析获得良好精密度的限制因素。计算机化曲线拟合的主要优点包括:(1)快速处理大量数据且无计算误差;(2)提供有用的质量控制数据;(3)指示测试结果的批内方差;(4)提供持续质量控制图和分析间方差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验