Keller L, Brunner P H
Ecotoxicol Environ Saf. 1983 Feb;7(1):141-50. doi: 10.1016/0147-6513(83)90058-1.
The anthropogenic contribution to the global cadmium flux exceeds natural sources by a factor of three. The most important pathway is the atmosphere; therefore, high cadmium concentrations can be found even in remote areas. On a local level, the increase in cadmium consumption can be observed in increasing concentrations in the soil, plants, and food. The question arises as to what extent the soil-plant-man-waste-soil cycle can be loaded with cadmium in order to function without negative impact on the environment. In Switzerland, 120 tons (t) of cadmium are consumed per year. Of this amount, 25 t end up in municipal solid waste, 3 t in wastewater, and 19 t in precipitation and dry fallout. As a consequence of today's waste management practice (75% incineration, 20% sanitary landfill, 5% composting; 75% of all sewage is purified), the annual input to the soil is 40 t: 18 t concentrated in landfills, 19 t dissipated via the atmosphere, and 3 t directly spread via sewage sludge, compost, and fertilizer on agricultural land. If even distribution were possible, the cadmium content of the soil would theoretically double in 150 years. The accumulation in the soil will increase the cadmium content of plants grown on such a soil. According to a simple model, the level of 3 ppm cadmium in soils should not be surpassed. At such concentrations, plants are likely to contain greater than 0.4 mg Cd/kg, a concentration which can cause toxic effects in long-term experiments. The safe level in food might be even lower. In reality, cadmium is not evenly distributed over Switzerland. According to today's practice, it must be assumed that in only 14 years the use of compost will have enriched soils to such an extent that its cadmium content will prohibit the production of food for human consumption. For sewage sludge, this timespan is 130 years. If heavy metal limits in food are to be observed, the input of such metals to the soil has to be limited. In a steady state, the cadmium input to the soil should be equal to its output via plants, leachate, and erosion. This implies that today's dissipative use of cadmium must be stopped.
人为因素对全球镉通量的贡献比自然来源高出两倍。最重要的途径是大气;因此,即使在偏远地区也能发现高浓度的镉。在地方层面,可以观察到土壤、植物和食物中镉含量的增加与镉消费量的增加有关。问题在于,土壤-植物-人类-废物-土壤循环在多大程度上能够承受镉的负荷,以便在不对环境产生负面影响的情况下运行。在瑞士,每年消费120吨镉。其中,25吨最终进入城市固体废物,3吨进入废水,19吨通过降水和干沉降进入环境。由于当今的废物管理做法(75%焚烧、20%卫生填埋、5%堆肥;75%的污水得到净化),每年进入土壤的镉为40吨:18吨集中在垃圾填埋场,19吨通过大气消散,3吨通过污水污泥、堆肥和肥料直接施用于农田。如果能够实现均匀分布,理论上土壤中的镉含量将在150年内翻倍。土壤中的积累将增加在这种土壤上生长的植物的镉含量。根据一个简单的模型,土壤中镉的含量不应超过3 ppm。在这样的浓度下,植物可能含有超过0.4毫克/千克的镉,在长期实验中,这个浓度可能会产生毒性作用。食品中的安全水平可能更低。实际上,镉在瑞士的分布并不均匀。根据目前的做法,必须假设仅在14年内,堆肥的使用就会使土壤富集到其镉含量将禁止生产供人类消费的食物的程度。对于污水污泥,这个时间跨度是130年。如果要遵守食品中的重金属限量,就必须限制这些金属向土壤中的输入。在稳定状态下,土壤中的镉输入应该等于通过植物、渗滤液和侵蚀输出的镉。这意味着必须停止当今对镉的分散使用。