Zwart A, Luijendijk S C, de Vries W R
J Appl Physiol Respir Environ Exerc Physiol. 1983 Jun;54(6):1745-53. doi: 10.1152/jappl.1983.54.6.1745.
Inert tracer gas exchange across the human respiratory system is simulated in an asymmetric lung model for different oscillatory breathing patterns. The momentary volume-averaged alveolar partial pressure (PA), the expiratory partial pressure (PE), the mixed expiratory partial pressure (PE), the end-tidal partial pressure (PET), and the mean arterial partial pressure (Pa), are calculated as functions of the blood-gas partition coefficient (lambda) and the diffusion coefficient (D) of the tracer gas. The lambda values vary from 0.01 to 330.0 inclusive, and four values of D are used (0.5, 0.22, 0.1, and 0.01). Three ventilation-perfusion conditions corresponding to rest and mild and moderate exercise are simulated. Under simulated exercise conditions, we compute a reversed difference between PET and Pa compared with the rest condition. This reversal is directly reflected in the relation between the physiological dead space fraction (1--PE/Pa) and the Bohr dead space fraction (1--PE/PET). It is argued that the difference (PET--Pa) depends on the lambda of the tracer gas, the buffering capacity of lung tissue, and the stratification caused by diffusion-limited gas transport in the gas phase. Finally some determinants for the reversed difference (PET--Pa) and the significance for conventional gas analysis are discussed.
在一个非对称肺模型中,针对不同的振荡呼吸模式模拟了惰性示踪气体在人体呼吸系统中的交换。计算了瞬时体积平均肺泡分压(PA)、呼气分压(PE)、混合呼气分压(PE)、潮气末分压(PET)和平均动脉分压(Pa),它们是示踪气体的血气分配系数(λ)和扩散系数(D)的函数。λ值在0.01至330.0(含)之间变化,并使用了四个D值(0.5、0.22、0.1和0.01)。模拟了三种对应于静息、轻度和中度运动的通气-灌注条件。在模拟运动条件下,与静息状态相比,我们计算出PET与Pa之间的反向差值。这种反向差值直接反映在生理死腔分数(1 - PE/Pa)与玻尔死腔分数(1 - PE/PET)之间的关系中。有人认为,差值(PET - Pa)取决于示踪气体的λ、肺组织的缓冲能力以及气相中扩散受限气体传输所导致的分层现象。最后讨论了反向差值(PET - Pa)的一些决定因素以及对传统气体分析的意义。