Suppr超能文献

生物膜中蛋白质扩散的基质控制

Matrix control of protein diffusion in biological membranes.

作者信息

Koppel D E, Sheetz M P, Schindler M

出版信息

Proc Natl Acad Sci U S A. 1981 Jun;78(6):3576-80. doi: 10.1073/pnas.78.6.3576.

Abstract

Lateral diffusion coefficients of fluorescently labeled lipids and integral membrane proteins were determined in the membranes of normal and spectrin-deficient spherocytic mouse erythrocytes by the technique of fluorescence redistribution after photobleaching. The results were used to generate a mathematical description of a matrix-control model of membrane protein diffusion. In the spherocytic cells, which lack the principal components of the cytoskeletal matrix of normal cells, the diffusion coefficients of lipid (1.5 +/- 0.5 X 10(-8) cm2/s) and protein (2.5 +/- 0.6 X 10(-9) cm2/s) differ only by a factor of 6, close to the difference predicted on the basis of size by the two-dimensional bilayer continuum model of Saffman and Delbrück [Saffman, P. G. l& Delbrück, M. (1975) Proc. Natl. Acad. Sci. USA 72, 3111-3113]. In contrast, the membranes of normal cells show a lipid diffusion coefficient (1.4 +/- 0.5 X 10(-8) cm2/s) that is some 300-fold greater than that of the membrane proteins (4.5 +/- 0.8 X 10(-11) cm2/s). Analysis of these results, based on the hypothesis that protein diffusion in normal membranes is sterically hindered by a labile matrix, yields an effective matrix surface viscosity consistent with the viscoelastic mechanical properties of the membranes. Thus, a relationship is established between the deformation characteristics of the membrane and the lateral mobility of proteins suspended in the membrane.

摘要

通过光漂白后荧光再分布技术,测定了正常和血影蛋白缺陷型球形小鼠红细胞膜中荧光标记脂质和整合膜蛋白的横向扩散系数。结果用于生成膜蛋白扩散的基质控制模型的数学描述。在缺乏正常细胞细胞骨架基质主要成分的球形细胞中,脂质(1.5±0.5×10⁻⁸ cm²/s)和蛋白质(2.5±0.6×10⁻⁹ cm²/s)的扩散系数仅相差6倍,接近根据Saffman和Delbrück的二维双层连续体模型[ Saffman, P. G. & Delbrück, M. (1975) Proc. Natl. Acad. Sci. USA 72, 3111 - 3113]基于大小预测的差异。相比之下,正常细胞膜的脂质扩散系数(1.4±0.5×10⁻⁸ cm²/s)比膜蛋白的扩散系数(4.5±0.8×10⁻¹¹ cm²/s)大约300倍。基于正常膜中蛋白质扩散受到不稳定基质空间位阻的假设对这些结果进行分析,得出与膜的粘弹性力学性质一致的有效基质表面粘度。因此,在膜的变形特性与悬浮在膜中的蛋白质的横向流动性之间建立了一种关系。

相似文献

1
Matrix control of protein diffusion in biological membranes.
Proc Natl Acad Sci U S A. 1981 Jun;78(6):3576-80. doi: 10.1073/pnas.78.6.3576.
3
Lateral mobility of erythrocyte membrane proteins studied by the fluorescence photobleaching recovery technique.
J Biochem. 1981 Oct;90(4):997-1004. doi: 10.1093/oxfordjournals.jbchem.a133586.
5
Mobility in geometrically confined membranes.
Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12605-10. doi: 10.1073/pnas.1102646108. Epub 2011 Jul 18.
6
Lateral mobility of integral membrane proteins is increased in spherocytic erythrocytes.
Nature. 1980 Jun 12;285(5765):510-1. doi: 10.1038/285510a0.
8
Lateral diffusion in biological membranes. A normal-mode analysis of diffusion on a spherical surface.
Biophys J. 1980 Apr;30(1):187-92. doi: 10.1016/S0006-3495(80)85087-9.
9
Lateral mobility of integral proteins in red blood cell tethers.
Biophys J. 1992 Jan;61(1):9-18. doi: 10.1016/S0006-3495(92)81811-8.
10
Molecular mobility on the cell surface.
Biochem Soc Symp. 1981(46):191-205.

引用本文的文献

1
Engineered Proteins and Chemical Tools to Probe the Cell Surface Proteome.
Chem Rev. 2025 Apr 23;125(8):4069-4110. doi: 10.1021/acs.chemrev.4c00554. Epub 2025 Apr 3.
2
NEU1 and NEU3 enzymes alter CD22 organization on B cells.
Biophys Rep (N Y). 2022 Jul 22;2(3):100064. doi: 10.1016/j.bpr.2022.100064. eCollection 2022 Sep 14.
4
Band 3 Protein: An Effective Interrogation Tool of Storage Lesions in RBC Units.
Indian J Hematol Blood Transfus. 2022 Apr;38(2):373-380. doi: 10.1007/s12288-021-01447-4. Epub 2021 May 17.
6
Multiscale Modeling of Complex Formation and CD80 Depletion during Immune Synapse Development.
Biophys J. 2017 Mar 14;112(5):997-1009. doi: 10.1016/j.bpj.2016.12.052.
7
There Is No Simple Model of the Plasma Membrane Organization.
Front Cell Dev Biol. 2016 Sep 29;4:106. doi: 10.3389/fcell.2016.00106. eCollection 2016.
9
Mobility of photosynthetic proteins.
Photosynth Res. 2013 Oct;116(2-3):465-79. doi: 10.1007/s11120-013-9898-y. Epub 2013 Aug 17.
10
The molecular basis of mechanisms underlying polarization vision.
Philos Trans R Soc Lond B Biol Sci. 2011 Mar 12;366(1565):627-37. doi: 10.1098/rstb.2010.0206.

本文引用的文献

2
Lateral mobility of integral membrane proteins is increased in spherocytic erythrocytes.
Nature. 1980 Jun 12;285(5765):510-1. doi: 10.1038/285510a0.
3
Lateral diffusion in biological membranes. A normal-mode analysis of diffusion on a spherical surface.
Biophys J. 1980 Apr;30(1):187-92. doi: 10.1016/S0006-3495(80)85087-9.
5
Modulation of membrane protein lateral mobility by polyphosphates and polyamines.
Proc Natl Acad Sci U S A. 1980 Mar;77(3):1457-61. doi: 10.1073/pnas.77.3.1457.
7
Lateral diffusion of rhodopsin in the photoreceptor membrane.
Nature. 1974 Feb 15;247(5441):438-41. doi: 10.1038/247438a0.
8
Lateral diffusion of visual pigment in photorecptor disk membranes.
Science. 1974 Aug 2;185(4149):457-9. doi: 10.1126/science.185.4149.457.
9
Rotational diffusion of rhodopsin in the visual receptor membrane.
Nat New Biol. 1972 Mar 15;236(63):39-43. doi: 10.1038/newbio236039a0.
10
Effects of phagocytosis and colchicine on the distribution of lectin-binding sites on cell surfaces.
Proc Natl Acad Sci U S A. 1974 Feb;71(2):394-8. doi: 10.1073/pnas.71.2.394.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验