Suppr超能文献

大肠杆菌膜泡中质子的电化学梯度及其与主动运输的关系。

The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles.

作者信息

Ramos S, Schuldiner S, Kaback H R

出版信息

Proc Natl Acad Sci U S A. 1976 Jun;73(6):1892-6. doi: 10.1073/pnas.73.6.1892.

Abstract

Membrane vesicles isolated from E. coli generate a trans-membrane proton gradient of 2 pH units under appropriate conditions when assayed by flow dialysis. Using the distribution of weak acids to measure the proton gradient (deltapH) and the distribution of the lipophilic cation triphenyl-methylphosphonium to measure the electrical potential across the membrane (delta psi), the vesicles are shown to generate an electrochemical proton gradient (deltamuH+) of approximately-180 mV at pH 5.5 in the presence of ascorbate and phenazine methosulfate, the major component of which is a deltapH of about -110mV. As external pH is increased, deltapH decreases, reaching 0 at pH 7.5 and above, while delta psi remains at about-75 mV and internal pH remains at pH 7.5. Moreover, the ability of various electron donors to drive transport is correlated with their ability to generate deltamuH+. In addition, deltapH and delta psi can be varied reciprocally in the presence of valinomycin and nigericin. These data and others (manuscript in preparation) provide convincing support for the role of chemiosmotic phenomena in active transport.

摘要

从大肠杆菌中分离出的膜泡,在适当条件下通过流动透析测定时,会产生2个pH单位的跨膜质子梯度。利用弱酸的分布来测量质子梯度(ΔpH),并用亲脂性阳离子三苯基甲基鏻的分布来测量跨膜电势(Δψ),结果表明,在抗坏血酸盐和吩嗪硫酸甲酯存在的情况下,这些膜泡在pH 5.5时会产生约-180 mV的电化学质子梯度(ΔμH⁺),其主要成分是约-110 mV的ΔpH。随着外部pH值升高,ΔpH降低,在pH 7.5及以上时降至0,而Δψ保持在约-75 mV,内部pH保持在pH 7.5。此外,各种电子供体驱动运输的能力与其产生ΔμH⁺的能力相关。此外,在缬氨霉素和尼日利亚菌素存在的情况下,ΔpH和Δψ可以相互变化。这些数据以及其他数据(正在准备的手稿)为化学渗透现象在主动运输中的作用提供了令人信服的支持。

相似文献

5
The electrochemical proton gradient in Mycoplasma cells.支原体细胞中的电化学质子梯度。
Eur J Biochem. 1981 Jan;113(3):491-8. doi: 10.1111/j.1432-1033.1981.tb05090.x.
10
Tobramycin uptake in Escherichia coli membrane vesicles.妥布霉素在大肠杆菌膜囊泡中的摄取
Antimicrob Agents Chemother. 1995 Feb;39(2):467-75. doi: 10.1128/AAC.39.2.467.

引用本文的文献

2
Structure and mechanism of membrane transporters.膜转运蛋白的结构与机制。
Sci Rep. 2022 Aug 2;12(1):13248. doi: 10.1038/s41598-022-17524-1.
3
Understanding Beta-Lactam-Induced Lysis at the Single-Cell Level.在单细胞水平上理解β-内酰胺诱导的裂解
Front Microbiol. 2021 Jul 27;12:712007. doi: 10.3389/fmicb.2021.712007. eCollection 2021.
4
Zinc transporters and their functional integration in mammalian cells.锌转运体及其在哺乳动物细胞中的功能整合。
J Biol Chem. 2021 Jan-Jun;296:100320. doi: 10.1016/j.jbc.2021.100320. Epub 2021 Jan 22.
6
Serotonin transport in the 21st century.二十一世纪的血清素转运蛋白
J Gen Physiol. 2019 Nov 4;151(11):1248-1264. doi: 10.1085/jgp.201812066. Epub 2019 Sep 30.
7
It takes two to tango: The dance of the permease.二人转:通透酶的舞蹈。
J Gen Physiol. 2019 Jul 1;151(7):878-886. doi: 10.1085/jgp.201912377. Epub 2019 May 30.
10
Arg302 governs the pK of Glu325 in LacY.Arg302 控制 LacY 中 Glu325 的 pK 值。
Proc Natl Acad Sci U S A. 2019 Mar 12;116(11):4934-4939. doi: 10.1073/pnas.1820744116. Epub 2019 Feb 21.

本文引用的文献

5
Chemiosmotic coupling in oxidative and photosynthetic phosphorylation.氧化磷酸化和光合磷酸化中的化学渗透偶联
Biol Rev Camb Philos Soc. 1966 Aug;41(3):445-502. doi: 10.1111/j.1469-185x.1966.tb01501.x.
7
Transport studies in bacterial membrane vesicles.细菌膜泡的转运研究
Science. 1974 Dec 6;186(4167):882-92. doi: 10.1126/science.186.4167.882.
9
Transport across isolated bacterial cytoplasmic membranes.跨分离的细菌细胞质膜转运。
Biochim Biophys Acta. 1972 Aug 4;265(3):367-416. doi: 10.1016/0304-4157(72)90014-7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验