Fellous A, Ginzburg I, Littauer U Z
EMBO J. 1982;1(7):835-9. doi: 10.1002/j.1460-2075.1982.tb01256.x.
Blot hybridization with labeled tubulin cDNA showed that treatment of Ramos cells, a human cell line of lymphoblastoid origin, with either alpha or beta interferon (IFN) induced a marked increase in the amount of tubulin mRNA sequences. The level of tubulin mRNA sequences increased rapidly after exposure of cells to IFN-alpha and reached a maximum after 1 h of treatment, which was four times the control level. Treatment with IFN-beta induced a maximal increase after 4 h; the amount of tubulin mRNA sequences was seven times higher than the control level. The mRNA extracted from IFN-treated and nontreated cells was translated in vitro in a reticulocyte lysate cell-free system containing [35S]methionine. Electrophoretic analysis of the labeled cell-free products showed an increase in the amount of translatable tubulin mRNA that parallels the time course of induction of tubulin mRNA sequences. Two-dimensional gel electrophoresis of the labeled protein products directed by mRNA indicates that IFN caused a more pronounced increase in the level of alpha-tubulin than beta-tubulin mRNA. Treatment with colchicine, which disrupts the cell microtubules, caused a marked decrease in the tubulin mRNA content. Concomitant treatment of the cells with colchicine and IFN abolished the interferon-dependent induction of tubulin mRNA.