Shimizu N, Behzadian M A, Shimizu Y
Proc Natl Acad Sci U S A. 1980 Jun;77(6):3600-4. doi: 10.1073/pnas.77.6.3600.
Mouse A9 cells, L-cell-derived mutants deficient in hypoxanthine phosphoribosyltransferase (HPRT; IMP:pyrophosphate phosphoribosyltransferase, EC 2.4.2.8) were found to be incapable of binding (125)I-labeled epidermal growth factor (EGF) to the cell surface. The A9 cells were fused with human diploid fibroblasts (WI-38) possessing EGF-binding ability, and human-mouse cell hybrids (TA series) were isolated after hypoxanthine/aminopterin/thymidine/ouabain selection. Analyses of isozyme markers and chromosomes of four representative clones of TA hybrids indicated that the expression of EGF-binding ability is correlated with the presence of human chromosome 7 or 19. Four subclones were isolated from an EGF-binding-positive line, TA-4, and segregation of EGF-binding was found to be concordant with the expression of human mitochondrial malate dehydrogenase (MDHM; L-malate:NAD(+) oxidoreductase, EC 1.1.1.37), a marker for chromosome 7, but not with glucosephosphate isomerase (GPI; D-glucose-6-phosphate ketol-isomerase, EC 5.3.1.9), a marker for chromosome 19. Furthermore, evidence from 27 clones of AUG hybrids that were produced between A9 and another human fibroblast line, GM1696, carrying an X/7 chromosome translocation indicated that EGF-binding ability segregates together with human MDHM and two X-linked markers, HPRT and glucose-6-phosphate dehydrogenase (G6PD; D-glucose-6-phosphate:NADP(+) 1-oxidoreductase, EC 1.1.1.49), that are located on the translocation chromosome 7p(+). These results permit assignment of the gene, designated EGFS, which is associated with the expression of EGF-binding ability, to human chromosome 7 and its localization to the p22-qter region. Because the EGF receptor is reported to be a glycoprotein the EGFS could be either a structural gene(s) for receptor protein or a gene(s) for modifying the receptor protein through glycosylation.
小鼠A9细胞是L细胞衍生的突变体,缺乏次黄嘌呤磷酸核糖基转移酶(HPRT;IMP:焦磷酸磷酸核糖基转移酶,EC 2.4.2.8),发现其无法将(125)I标记的表皮生长因子(EGF)结合到细胞表面。将A9细胞与人二倍体成纤维细胞(WI-38)融合,后者具有EGF结合能力,经过次黄嘌呤/氨基蝶呤/胸腺嘧啶核苷/哇巴因筛选后分离出人类-小鼠细胞杂种(TA系列)。对TA杂种的四个代表性克隆的同工酶标记和染色体进行分析表明,EGF结合能力的表达与人类染色体7或19的存在相关。从一个EGF结合阳性系TA-4中分离出四个亚克隆,发现EGF结合的分离与人类线粒体苹果酸脱氢酶(MDHM;L-苹果酸:NAD(+)氧化还原酶,EC 1.1.1.37)的表达一致,MDHM是染色体7的一个标记,但与葡萄糖磷酸异构酶(GPI;D-葡萄糖-6-磷酸酮醇异构酶,EC 5.3.1.9)不一致,GPI是染色体19的一个标记。此外,对A9与另一个携带X/7染色体易位的人类成纤维细胞系GM1696之间产生的27个AUG杂种克隆的研究表明,EGF结合能力与人类MDHM以及两个X连锁标记次黄嘌呤磷酸核糖基转移酶(HPRT)和葡萄糖-6-磷酸脱氢酶(G6PD;D-葡萄糖-6-磷酸:NADP(+)1-氧化还原酶,EC 1.1.1.49)一起分离,这些标记位于易位染色体7p(+)上。这些结果允许将与EGF结合能力表达相关的基因(命名为EGFS)定位到人类染色体7及其p22-qter区域。由于据报道EGF受体是一种糖蛋白,EGFS可能是受体蛋白的结构基因,也可能是通过糖基化修饰受体蛋白的基因。