Suppr超能文献

Effect of acetate on transport of organic acid (fluorescein) in renal proximal tubules of frog.

作者信息

Nikiforov A A

出版信息

Biochim Biophys Acta. 1982 Mar 23;686(1):36-46. doi: 10.1016/0005-2736(82)90149-3.

Abstract

The effect of acetate on active fluorescein transport in intact proximal tubules of surviving frog kidney was studied. When the kidneys were incubated in a 120 mM Na+ medium, 10 mM acetate stimulated fluorescein uptake in the tubules. The stimulation was more pronounced if the kidneys had been previously preincubated for 3 h in the substrate-free solution. Lowering of the Na+ concentration in the bathing medium to 10 mM resulted in the disappearance of the acetate effect. Preincubation of the kidneys with acetate at 2-4 degrees C gave rise to stimulation of the fluorescein transport only in the 120 mM Na+ acetate-free medium. The acetate effect on the fluorescein uptake was partially prevented by ouabain. The stimulation of the uptake by acetate in the 120 mM Na+ medium correlated with an increase in the extent of reduction of pyridine nucleotides in the tubules. The pyridine nucleotides were reduced more markedly after incubation of the kidneys in the 10 mM Na+ medium, when acetate had no effect on the fluorescein transport. In both the 120 MM and the 10 mM Na+ media, the cold preincubation of the kidneys with 2.5 mM ADP or 2.5 mM ATP resulted in only slight stimulation of the fluorescein uptake. But in both media the uptake was significantly enhanced after cold preincubation of the kidneys with 2 mM NADH. After the cold preincubation with ADP, stimulation of the fluorescein transport by acetate was observed in the case of the 10 mM Na+ medium also. The absence of any stimulatory effect of acetate on the organic acid transport in the 10 mM Na+ medium is explained as the result of the transformation of mitochondria in the tubular cells into the inactive state 4 due to a decrease in the intracellular ADP level. Reducing equivalents are supposed to take part in energization and/or regulation of transport processes in plasma membranes of the renal proximal tubules.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验