Bartels P H
Anal Quant Cytol. 1981 Jun;3(2):83-90.
The principal components transformation offers an effective methods for dimensionality reduction and for the assessment of the mutual dependence of observed variables in a data set. An iterative procedure, the so-called power method, for finding a multivariate distribution's eigenvectors and eigenvalues is demonstrated. The projection of feature vectors onto the principal components is shown.
主成分变换为降维和评估数据集中观测变量的相互依赖性提供了一种有效方法。展示了一种用于寻找多元分布的特征向量和特征值的迭代过程,即所谓的幂法。还展示了特征向量在主成分上的投影。